Noble Metal Nanoparticles and Their (Bio) Conjugates. II. Preparation

2016 ◽  
Vol 8 (1) ◽  
pp. 86
Author(s):  
Ignác Capek

Hybrid nanoparticles of gold and silver can not only retain the beneficial features of both nanomaterials, but also possess unique advantages (synergism) over the other two types. Novel pseudospherical and anisotropic nanoparticles, bimetallic triangular nanoparticles, and core@shell nanoparticles were prepared by the different procedures for various applications and understanding both the particle evolution (nucleation) and nanoparticle anisotropy. Hybrid nanoparticles of gold and silver are considered to be low in toxicity, and exhibit facile surface functionalization chemistry. Furthermore, their absorption peaks are located in visible and near-infrared region. These nanoparticles provide significant plasmon tunability, chemical and surface modification properties, and significant advances in the growth into anisotropic nanostructures. The photoinduced synthesis can be used to prepare various (sub) nanoparticles and OD and 1D nanoparticles. Ostwald and digestive ripening provided narrower particle size distribution.

2022 ◽  
Vol 26 ◽  
pp. 101341
Author(s):  
Li Dong ◽  
Hongwei Chu ◽  
Ying Li ◽  
Xiaoyang Ma ◽  
Han Pan ◽  
...  

2015 ◽  
Vol 133 ◽  
pp. 198-207 ◽  
Author(s):  
Ibrahim Hocaoglu ◽  
Didar Asik ◽  
Gulen Ulusoy ◽  
Christian Grandfils ◽  
Isaac Ojea-Jimenez ◽  
...  

Nanomaterials ◽  
2020 ◽  
Vol 10 (2) ◽  
pp. 224
Author(s):  
Massimo Ottonelli ◽  
Stefania Zappia ◽  
Anna Demartini ◽  
Marina Alloisio

Noble metal anisotropic nanostructures have achieved a growing interest in both academic and industrial domains mostly because of their shape-dependent plasmonic properties in the near-infrared region. In this paper, gold and gold-silver anisotropic nanostructures were synthesized in very high shape-yields through a wet, seed-mediated approach based on the use of nearly spherical silver nanoparticles as seeds and chitosan as stabilizing agent. Two chitosans of different origin and molecular properties were selected for the synthetic pathway, leading to the formation of variously sized and shaped end products. In detail, quite homogeneous nanoplatelets of about 25-nm size and 7-nm thickness or nearly spherical, highly porous nanocages of about 50-nm size were obtained, depending on the type of polysaccharide employed. The shape transition towards anisotropic morphologies occurred through a slow, spontaneous process, in which the chitosan nature seemed to play a key role. As expected, both nanoplatelets and nanocages exhibit shape-dependent plasmonic features and surface properties tunable for a variety of application fields. To prove this point, the nanostructures were successfully post-functionalized with poly(10,12-pentacosadiynoic acid) (PCDA), a carboxylic-endowed diacetylene able to anchor on noble metal substrates, to obtain versatile, chromic platforms suitable for sensing and spectroscopic purposes.


2021 ◽  
Author(s):  
Abhineet Verma ◽  
Sk Saddam Hossain ◽  
Sailaja S Sunkari ◽  
Joseph Reibenspies ◽  
Satyen Saha

Lanthanides (LnIII) are well known for their characteristic emission in the Near-Infrared Region (NIR). However, direct excitation of lanthanides is not feasible as described by Laporte’s parity selection rule. Here,...


Author(s):  
Cong Shen ◽  
Yan Qing Zhu ◽  
Zixiao Li ◽  
Jingling Li ◽  
Hong Tao ◽  
...  

InP quantum dots (QDs) are considered as the most promising alternative to Cd-based QDs with the lower toxicity and emission spectrum tunability ranging from visible to near-infrared region. Although high-quality...


LWT ◽  
2021 ◽  
Vol 143 ◽  
pp. 111092
Author(s):  
Jose Marcelino S. Netto ◽  
Fernanda A. Honorato ◽  
Patrícia M. Azoubel ◽  
Louise E. Kurozawa ◽  
Douglas F. Barbin

Sign in / Sign up

Export Citation Format

Share Document