scholarly journals Organic Carbon Decomposition in Soil Amended With Organic Compost From Slaughterhouse Residues

2018 ◽  
Vol 10 (8) ◽  
pp. 7
Author(s):  
Magnum de Sousa Pereira ◽  
Julius Blum ◽  
Henrique Antunes de Souza ◽  
Carlos Kenji Taniguchi

Decomposition kinetic of applied compost in soil depends on the decomposition rate coefficient (k), environmental conditions and the interactions with soil. However, studies with the aim of determining k values for different materials rarely consider interactions with soil. The objective of the current study was to estimate k value of an organic compost, considering the interactions with the soil. Samples of soil mixed with compost were incubated in hermetic recipients for 126 days and evolved C-CO2 was quantified. Nonlinear models proposed in the present study were fitted to evolved C-CO2 data. Better fitting was found in a model that divided the soil organic matter in four pools (labile and recalcitrant native soil organic matter; protected and unprotected added organic matter), values of k on both native organic matter pools were multiplied by a constant denominated priming (pr) only in the cases where the compost was added to the soil and the amount of C in the protected pool is limited to the soil protection capacity. Organic compost produced using carcasses, sheepfold residues and slaughterhouse residues presented k value equal to 0.01179 day-1 at 31 oC without water stress. Compost application increased in 9.8% the decomposition of the native soil organic matter.

Agronomy ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 1078
Author(s):  
Christopher Brock ◽  
Meike Oltmanns ◽  
Christoph Matthes ◽  
Ben Schmehe ◽  
Harald Schaaf ◽  
...  

Mixed-crop-livestock farms offer the best conditions for sustainable nutrient management in organic farming. However, if stocking rates are too low, sustainability might be threatened. Therefore, we studied the development of soil organic matter and nutrients as well as crop yields over the first course of a new long-term field experiment with a mimicked cattle stocking rate of 0.6 LU ha−1, which is the actual average stocking rate for organic farms in Germany. In the experiment, we tested the effects of additional compost application to improve organic matter supply to soils, and further, potassium sulfate fertilization for an improved nutrition of fodder legumes. Compost was made from internal resources of the farm (woody material from hedge-cutting). Soil organic matter and nutrient stocks decreased in the control treatment, even though yield levels, and thus nutrient exports, were comparably low. With compost application, soil organic matter and nutrient exports could be compensated for. At the same time, the yields increased but stayed at a moderate level. Potassium sulfate fertilization further improved N yields. We conclude that compost from internal resources is a viable solution to facilitate sustainable organic crop production at low stocking rates. However, we are aware that this option does not solve the basic problem of open nutrient cycles on the farm gate level.


2016 ◽  
Vol 9 (2) ◽  
pp. 841-855 ◽  
Author(s):  
Bertrand Guenet ◽  
Fernando Esteban Moyano ◽  
Philippe Peylin ◽  
Philippe Ciais ◽  
Ivan A Janssens

Abstract. Priming of soil carbon decomposition encompasses different processes through which the decomposition of native (already present) soil organic matter is amplified through the addition of new organic matter, with new inputs typically being more labile than the native soil organic matter. Evidence for priming comes from laboratory and field experiments, but to date there is no estimate of its impact at global scale and under the current anthropogenic perturbation of the carbon cycle. Current soil carbon decomposition models do not include priming mechanisms, thereby introducing uncertainty when extrapolating short-term local observations to ecosystem and regional to global scale. In this study we present a simple conceptual model of decomposition priming, called PRIM, able to reproduce laboratory (incubation) and field (litter manipulation) priming experiments. Parameters for this model were first optimized against data from 20 soil incubation experiments using a Bayesian framework. The optimized parameter values were evaluated against another set of soil incubation data independent from the ones used for calibration and the PRIM model reproduced the soil incubations data better than the original, CENTURY-type soil decomposition model, whose decomposition equations are based only on first-order kinetics. We then compared the PRIM model and the standard first-order decay model incorporated into the global land biosphere model ORCHIDEE (Organising Carbon and Hydrology In Dynamic Ecosystems). A test of both models was performed at ecosystem scale using litter manipulation experiments from five sites. Although both versions were equally able to reproduce observed decay rates of litter, only ORCHIDEE–PRIM could simulate the observed priming (R2  =  0.54) in cases where litter was added or removed. This result suggests that a conceptually simple and numerically tractable representation of priming adapted to global models is able to capture the sign and magnitude of the priming of litter and soil organic matter.


1993 ◽  
Vol 80 (5) ◽  
pp. 219-221 ◽  
Author(s):  
H. Knicker ◽  
R. Fr�nd ◽  
H. -D. L�demann

Radiocarbon ◽  
1996 ◽  
Vol 38 (2) ◽  
pp. 181-190 ◽  
Author(s):  
Kevin G. Harrison

Although soil contains about three times the amount of carbon present in the preindustrial atmosphere, determining how perturbations (e.g., changing land use, CO2 fertilization, changing climate and anthropogenic nitrogen deposition) alter soil carbon storage and influence atmospheric CO2 levels has proved elusive. Not knowing the soil carbon turnover times causes part of this uncertainty. I outline a strategy for using radiocarbon measurements to estimate soil organic matter turnover times and inventories in native soil. The resulting estimates of carbon exchange produce reasonable agreement with measurements of CO2 fluxes from soil. Furthermore, derivatives of the model are used to explore soil carbon dynamics of cultivated and recovering soil. Because the models can reproduce observed soil 14C measurements in native, cultivated, and recovering ecosystems (i.e., the underlying assumptions appear reasonable), the native model was modified to estimate the potential rate of additional carbon storage because of CO2 fertilization. This process may account for 45–65% of the “missing CO2 sink.”


GCB Bioenergy ◽  
2014 ◽  
Vol 7 (3) ◽  
pp. 512-526 ◽  
Author(s):  
H. M. S. K. Herath ◽  
M. Camps-Arbestain ◽  
M.J. Hedley ◽  
M.U.F. Kirschbaum ◽  
T. Wang ◽  
...  

Agronomy ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 2553
Author(s):  
Magdalena Banach-Szott ◽  
Andrzej Dziamski ◽  
Maciej Markiewicz

The still-advancing soil degradation and the related losses of soil organic carbon stocks due to the limited inflow of organic residues in agro-ecosystems encourage more and more soil protection. Establishing meadow ecosystems is one of the key methods of agricultural land use preventing losses of organic carbon in soils. Based on the research on the properties of humic acids, it is possible to determine the advancement of the processes of transformation and decomposition of soil organic matter. The obtained results may allow for the development of a soil protection strategy and more effective sequestration of organic carbon. Therefore, the aim of the research was to determine the properties of humic acids defining the quality of organic matter of meadow soils irrigated for 150 years with the slope-and-flooding system. The research was performed based on the soils (Albic Brunic Arenosol) sampled from Europe’s unique complex of permanent irrigated grasslands (the same irrigation management for 150 years), applying the slope-and-flooding system: the Czerskie Meadows. The soil samples were assayed for the content of total organic carbon (TOC) and the particle size distribution. HAs were extracted with the Schnitzer method and analysed for the elemental composition, spectrometric parameters in the UV-VIS (ultraviolet-visible) range, hydrophilic and hydrophobic properties and the infrared spectra. The research results showed that the HAs properties depend on the depth and the distance from the irrigation ditch. The HAs of soils sampled from the depth of 0–10 cm were identified with a lower “degree of maturity” as compared with the HAs of soils sampled from the depth of 20–30 cm, reflected by the values of atomic ratios (H/C, O/C, O/H), absorbance coefficients, and the FT-IR (Fourier transform infrared) spectra. The mean values of the H/C ratio in the HAs molecules of soils sampled from the depth of 20–30 cm were lower by 8.2% than those from the depth of 0–10 cm. The mean values of the absorbance coefficient A4/6 in the HAs molecules of soils sampled from the depth of 20–30 cm were lower by 9.6% than in the HAs molecules of soils sampled from the depth of 0–10 cm. The HAs molecules of the soils sampled 25 m from the irrigation ditch were identified with a higher degree of humification, as compared with the HAs of the soils sampled 5 m from the irrigation ditch. The results identified that humic acids produced in the many-year irrigated sandy soils were identified with a high degree of humification, which proves the relative stability of the soil’s organic matter. It confirms the importance of meadow soils for the carbon sequestration process. It should also be emphasized that the research area is interesting, although hardly described in terms of organic matter properties. Further and more detailed applicable research is planned, e.g., monitoring of total organic carbon content and comparing the properties of irrigated and non-irrigated meadow soils. Continuity of research is necessary to assess the direction of the soil organic matter transformation in such a unique ecosystem. The obtained results may allow for the development of, inter alia, models of agricultural practices that increase carbon sequestration in soils. In the long term, this will allow for greater environmental benefits and, thus, also increased financial benefits.


2015 ◽  
Vol 8 (10) ◽  
pp. 9193-9227
Author(s):  
B. Guenet ◽  
F. E. Moyano ◽  
P. Peylin ◽  
P. Ciais ◽  
I. A. Janssens

Abstract. Priming of soil carbon decomposition encompasses different processes through which the decomposition of native (already present) soil organic matter is amplified through the addition of new organic matter, with new inputs typically being more labile than the native soil organic matter. Evidence for priming comes from laboratory and field experiments, but to date there is no estimate of its impact at global scale and under the current anthropogenic perturbation of the carbon cycle. Current soil carbon decomposition models do not include priming mechanisms, thereby introducing uncertainty when extrapolating short-term local observations to ecosystem and regional to global scale. In this study we present a simple conceptual model of decomposition priming, called PRIM, able to reproduce laboratory (incubation) and field (litter manipulation) priming experiments. Parameters for this model were first optimized against data from 20 soil incubation experiments using a Bayesian framework. The optimized parameter values were evaluated against another set of soil incubation data independent from the ones used for calibration and the PRIM model reproduced the soil incubations data better than the original, CENTURY-type soil decomposition model, whose decomposition equations are based only on first order kinetics. We then compared the PRIM model and the standard first order decay model incorporated into the global land biosphere model ORCHIDEE. A test of both models was performed at ecosystem scale using litter manipulation experiments from 5 sites. Although both versions were equally able to reproduce observed decay rates of litter, only ORCHIDEE-PRIM could simulate the observed priming (R2 = 0.54) in cases where litter was added or removed. This result suggests that a conceptually simple and numerically tractable representation of priming adapted to global models is able to capture the sign and magnitude of the priming of litter and soil organic matter.


Sign in / Sign up

Export Citation Format

Share Document