scholarly journals Analysis of the Impact of Land Use and Occupation on the Biophysical Variables of the Cerrado Biome in Southwest Goiano, Brazil

2018 ◽  
Vol 11 (1) ◽  
pp. 399
Author(s):  
Victor H. Moraes ◽  
Pedro R. Giongo ◽  
Marcio Mesquita ◽  
Thomas J. Cavalcante ◽  
Matheus V. A. Ventura ◽  
...  

The change in the use of natural vegetation by annual or perennial crops, sugarcane and fast-growing forests causes changes in the biophysical variables, and these changes can be monitored by remote sensing. The objective of this work was to evaluate, on a temporal scale, the impacts of land use changes on biophysical variables in the county of Santa Helena de Goias-Goias/Brazil. Between the years of 2000 to 2015 areas were identified for agricultural crops 1 (annual crops), water, agricultural crops 2 (sugarcane), natural vegetation, pasture and urban areas. The MODIS (Moderate Resolution Spectroradiometer) sensor products were selected for study: MOD11A2-Surface temperature; MOD16A2-Real evapotranspiration, MOD13Q1-Enhanced Vegetation Index and rainfall data from TRMM (Tropical Rainfall Measuring Mission). The geographic coordinates referring to the land uses were inserted in the LAPIG platform, searching the information of the biophysical variables referring to the selected pixel. The impact of land use change was evaluated by calculating the weighted average through the quantitative classification of the areas. It is concluded for the period of study that the index of average vegetation of the county had increase. There was an increase in the evapotranspiration volume of the county from 28% from 2000 to 2013 and the average surface temperature of the county showed a reduction of 2 °C in the period from 2000 to 2015.

Author(s):  
F. Ike ◽  
I.C. Mbah ◽  
C.R. Otah ◽  
J. Babington ◽  
L. Chikwendu

The land surfaces of hot-humid tropical urban areas are exposed to significant levels of solar radiation. Increased heat gain adds to different land surface temperature profiles in cities, resulting in different thermal discomfort thresholds. Using multi-temporal (1986, 2001, and 2017) landsat data, this study examined the impact of land use change on urban temperature profiles in Umuahia, Nigeria. The findings revealed that over time, built-up regions grow in surface area and temperature at the expense of other land use. The transfer matrix, showed that approximately 59.88 percent of vegetation and 8.23 percent of bareland were respectively changed into built up during the course of 31 years. The highest annual mean temperature in built-up regions was 21.50°C in 1986, 22.20°C in 2001, and 26.01°C in 2017. Transect profiles across the landuses reveals that surface Temperature rises slowly around water/vegetation and quickly over built-up and bare land area. The study observed drastic changes in land cover with a corresponding increase in surface temperature for the period between 1986 and 2017 with consistent decrease in water bodies and bare land in the study area. Overall, the spatio-temporal distribution of surface temperature in densely built up areas was higher than the adjacent rural surroundings, which is evidence of Urban Heat Island. The impact of landuse change on urban surface temperature profiles could provide detailed data to planners and decision makers in evaluating thermal comfort levels and other risk considerations in the study area.


2021 ◽  
Vol 10 (12) ◽  
pp. 809
Author(s):  
Jing Sun ◽  
Suwit Ongsomwang

Land surface temperature (LST) is an essential parameter in the climate system whose dynamics indicate climate change. This study aimed to assess the impact of multitemporal land use and land cover (LULC) change on LST due to urbanization in Hefei City, Anhui Province, China. The research methodology consisted of four main components: Landsat data collection and preparation; multitemporal LULC classification; time-series LST dataset reconstruction; and impact of multitemporal LULC change on LST. The results revealed that urban and built-up land continuously increased from 2.05% in 2001 to 13.25% in 2020. Regarding the impact of LULC change on LST, the spatial analysis demonstrated that the LST difference between urban and non-urban areas had been 1.52 K, 3.38 K, 2.88 K and 3.57 K in 2001, 2006, 2014 and 2020, respectively. Meanwhile, according to decomposition analysis, regarding the influence of LULC change on LST, the urban and built-up land had an intra-annual amplitude of 20.42 K higher than other types. Thus, it can be reconfirmed that land use and land cover changes due to urbanization in Hefei City impact the land surface temperature.


2018 ◽  
Vol 10 (11) ◽  
pp. 4287 ◽  
Author(s):  
Yantao Xi ◽  
Nguyen Thinh ◽  
Cheng Li

Rapid urbanization has dramatically spurred economic development since the 1980s, especially in China, but has had negative impacts on natural resources since it is an irreversible process. Thus, timely monitoring and quantitative analysis of the changes in land use over time and identification of landscape pattern variation related to growth modes in different periods are essential. This study aimed to inspect spatiotemporal characteristics of landscape pattern responses to land use changes in Xuzhou, China durfing the period of 1985–2015. In this context, we propose a new spectral index, called the Normalized Difference Enhanced Urban Index (NDEUI), which combines Nighttime light from the Defense Meteorological Satellite Program/Operational Linescan System with annual maximum Enhanced Vegetation Index to reduce the detection confusion between urban areas and barren land. The NDEUI-assisted random forests algorithm was implemented to obtain the land use/land cover maps of Xuzhou in 1985, 1995, 2005, and 2015, respectively. Four different periods (1985–1995, 1995–2005, 2005–2015, and 1985–2015) were chosen for the change analysis of land use and landscape patterns. The results indicate that the urban area has increased by about 30.65%, 10.54%, 68.77%, and 143.75% during the four periods at the main expense of agricultural land, respectively. The spatial trend maps revealed that continuous transition from other land use types into urban land has occurred in a dual-core development mode throughout the urbanization process. We quantified the patch complexity, aggregation, connectivity, and diversity of the landscape, employing a number of landscape metrics to represent the changes in landscape patterns at both the class and landscape levels. The results show that with respect to the four aspects of landscape patterns, there were considerable differences among the four years, mainly owing to the increasing dominance of urbanized land. Spatiotemporal variation in landscape patterns was examined based on 900 × 900 m sub-grids. Combined with the land use changes and spatiotemporal variations in landscape patterns, urban growth mainly occurred in a leapfrog mode along both sides of the roads during the period of 1985 to 1995, and then shifted into edge-expansion mode during the period of 1995 to 2005, and the edge-expansion and leapfrog modes coexisted in the period from 2005 to 2015. The high value spatiotemporal information generated using remote sensing and geographic information system in this study could assist urban planners and policymakers to better understand urban dynamics and evaluate their spatiotemporal and environmental impacts at the local level to enable sustainable urban planning in the future.


Proceedings ◽  
2020 ◽  
Vol 30 (1) ◽  
pp. 62
Author(s):  
Zahra Kalantari ◽  
Johanna Sörensen

The densification of urban areas has raised concerns over increased pluvial flooding. Flood risk in urban areas might increase under the impact of land use changes. Urbanisation involves the conversion of natural areas to impermeable areas, causing lower infiltration rates and increased runoff. When high-intensity rainfall exceeds the capacity of an urban drainage system, the runoff causes pluvial flooding in low-laying areas. In the present study, a long time series (i.e., 20 years) of geo-referenced flood claims from property owners has been collected and analysed in detail to assess flood risk as it relates to land use changes in urban areas. The flood claim data come from property owners with flood insurance that covers property loss from overland flooding, groundwater intrusion through basement walls, as well as flooding from drainage systems; these data serve as a proxy of flood severity. The spatial relationships between land use change and flood occurrences in different urban areas were analysed. Special emphasis was placed on examining how nature-based solutions and blue-green infrastructure relate to flood risk. The relationships are defined by a statistical method explaining the tendencies whereby land use change affects flood risk.


Proceedings ◽  
2019 ◽  
Vol 30 (1) ◽  
pp. 25
Author(s):  
Leitão ◽  
Ferreira ◽  
Ferreira

Land-use changes driven by human activities affect natural systems. Urbanization, forest monoculture and intensive agriculture are changing the functioning of many biotic and abiotic processes. This tends to decrease the ability of ecosystems to provide services, which leads to several problems particularly in cities. This study investigates the ability of urban areas with great population and environmental pressures, to supply ecosystem services. The study was carried out in Coimbra municipality, through the assessment of regulation, provisioning and cultural services. The quantification of ecosystem services was based on the evaluation performed by experts familiar with the study area, through questionnaires. A total of 31 questionnaires were completed. The experts ranked the potential supply of 30 ecosystem services for the 33 existent land-uses. based on a qualitative evaluation: “strong adverse potential”, “weak adverse potential”, “not relevant”, “low positive potential” and “strong positive potential”. The qualitative evaluation was converted into a quantitative classification (−2, −1, 0, 1, 2). The values were used to develop an ecosystem services quantification matrix and to map the information in the study area, using Geographic Information Systems (GIS). Despite the limited ecosystem services provided by urban areas, agricultural fields and especially green spaces are relevant for the provision of resources essential for human survival and well-being. The methodology used in this work is still useful for the quantification of ecosystem services in cities with characteristics associated with the Mediterranean climate. This type of studies are important to (i) anticipate problems originated from the loss of ecosystem services, (ii) identify good and bad practices of land use changes, (iii) the role of connectivity in maintaining biotic and abiotic processes, and (iv) develop practices that promote the sustainable development of societies.


2013 ◽  
Vol 726-731 ◽  
pp. 4645-4649
Author(s):  
Jia Hua Zhang ◽  
Cui Hao ◽  
Feng Mei Yao

We developed an approach to assess urban land use changes that incorporates socio-economic and environmental factors with multinomial logistic model, remote sensing data and GIS, and to quantify the impact of macro variables on land use of urban areas for the years 1990, 2000 and 2010 in Binhai New Area, China. The Markov transition matrix was designed to integrate with multinomial logistic model to illustrate and visualize the predicted land use surface. The multinomial logistic model was evaluated by means of Likelihood ratio test and Pseudo R-Square and showed a relatively good simulation. The prediction map of 2010 showed accurate rates 78.54%, 57.25% and 70.38%, respectively.


2016 ◽  
Vol 11 (3) ◽  
pp. 110-125 ◽  
Author(s):  
Yan Li ◽  
Chunlu Liu

Urban flooding has been a severe problem for many cities around the world as it remains one of the greatest threats to the property and safety of human communities. In Australia, it is seen as the most expensive natural hazard. However, urban areas that are impervious to rainwater have been sharply increasing owing to booming construction activities and rapid urbanisation. The change in the built environment may cause more frequent and longer duration of flooding in floodprone urban regions. Thus, the flood inundation issue associated with the effects of land uses needs to be explored and developed. This research constructs a framework for modelling urban flood inundation. Different rainfall events are then designed for examining the impact on flash floods generated by land-use changes. Measurement is formulated for changes of topographical features over a real time series. Geographic Information System (GIS) technologies are then utilised to visualise the effects of land-use changes on flood inundation under different types of storms. Based on a community-based case study, the results reveal that the built environment leads to varying degrees of aggravation of urban flash floods with different storm events and a few rainwater storage units may slightly mitigate flooding extents under different storm conditions. Hence, it is recommended that the outcomes of this study could be applied to flood assessment measures for urban development and the attained results could be utilised in government planning to raise awareness of flood hazard.


2017 ◽  
Vol 10 (1-2) ◽  
pp. 31-39 ◽  
Author(s):  
Shwan O. Hussein ◽  
Ferenc Kovács ◽  
Zalán Tobak

Abstract The rate of global urbanization is exponentially increasing and reducing areas of natural vegetation. Remote sensing can determine spatiotemporal changes in vegetation and urban land cover. The aim of this work is to assess spatiotemporal variations of two vegetation indices (VI), the Normalized Difference Vegetation Index (NDVI) and Enhanced Vegetation Index (EVI), in addition land cover in and around Erbil city area between the years 2000 and 2015. MODIS satellite imagery and GIS techniques were used to determine the impact of urbanization on the surrounding quasi-natural vegetation cover. Annual mean vegetation indices were used to determine the presence of a spatiotemporal trend, including a visual interpretation of time-series MODIS VI imagery. Dynamics of vegetation gain or loss were also evaluated through the study of land cover type changes, to determine the impact of increasing urbanization on the surrounding areas of the city. Monthly rainfall, humidity and temperature changes over the 15-year-period were also considered to enhance the understanding of vegetation change dynamics. There was no evidence of correlation between any climate variable compared to the vegetation indices. Based on NDVI and EVI MODIS imagery the spatial distribution of urban areas in Erbil and the bare around it has expanded. Consequently, the vegetation area has been cleared and replaced over the past 15 years by urban growth.


Author(s):  
Marj Tonini ◽  
Joana Parente ◽  
Mario Pereira

Abstract. The wildland-/rural-urban interface (WUI/RUI) is a particularly important aspect of the fire regime. In Mediterranean basin most of the fires in this pyro region are caused by humans and the risk and consequences are particularly high due to the close proximity to population, human infrastructures and urban areas. Population increase, urban growth and the rapid changes in land use incurred in Europe over the last 30 years has been unprecedented, especially nearby the metropolitan areas, and some of these trends are expected to continue. Associated to high socioeconomic development, Portugal experienced in the last decades significant land cover/land use changes (LCLUC), population dynamics and demographic trends in response to migration, rural abandonment, and ageing of rural population. This study aims to assess the evolution of RUI in Portugal, from 1990 to 2012, based on LCLUC providing also a quantitative characterization of forest fires dynamics in relation to the burnt area. Obtained results disclose important LCLUC which spatial distribution is far from uniform within the territory. A significant increase in artificial surfaces is registered nearby the main metropolitan communities of the northwest and littoral-central and southern regions, whilst the abandonment of agricultural land nearby the inland urban areas leads to an increase of uncultivated semi-natural and forest areas. Within agricultural areas, heterogeneous patches suffered the greatest changes and are the main contributors to the increase of urban areas. Moreover these are among the LCLU classes with higher burnt area, reasons why heterogeneous agricultural areas have been included in the definition of RUI. Finally, the mapped RUI’s area, burnt area and burnt area within RUI allow to conclude that, form 1990 to 2012 in Portugal, RUI increased more than two thirds and total burnt area decreased one third. Nevertheless, burnt area within RUI doubled, which emphasize the significance of RUI for land and fire managers. This research provides a first quantitative global assessment of RUI in Portugal and presents an innovative analysis on the impact of land use changes on burnt areas.


2020 ◽  
Author(s):  
Inês Amorim Leitão ◽  
Carla Sofia Santos Ferreira ◽  
António José Dinis Ferreira

<p>Land-use changes affect the properties of ecosystems, and are typically associated with decreasing ability to supply services, which in turn causes a decrease in the social well-being. Urbanization is identified as one of the main causes of ecosystem degradation, once it is considered an artificial space that replaces natural areas.This study investigates the impact of land-use changes during 20 years (1995-2015) on the potential supply of ecosystem services in Coimbra municipality, central Portugal. The assessment was based on the evaluation performed by 31 experts familiar with the study area, through questionnaires. The experts ranked the potential supply of 31 ecosystem services, grouped in regulation, provisioning and cultural services, for the several land-uses existent. Experts performed a qualitative evaluation, considering ‘strong adverse potential’, ‘weak adverse potential’, ‘not relevant’, ‘low positive potential’ and ‘strong positive potential’. The qualitative evaluation was converted into a quantitative classification (-2, -1, 0, 1, 2). Quantitative values were then used to develop an ecosystem services quantification matrix and to map the information in the study area, using Geographic Information Systems (GIS). An urban expansion from 14% to 18% was recorded over the last 20 years. Agricultural land decreased 8% due to conversion into forest (4% increase) and urban areas (4% increase). This has led to a decrease in the supply of provision (e.g. food) and regulation services (e.g. flood regulation). In fact, over the last years, recurrent floods have been increasingly noticed in Coimbra city. On the other hand, the growth of forest areas has led to an increase in general ESs supply. The adverse impacts of urbanization were partially compensated by enlarging the benefits provided by forest areas, which is the land-use with greatest ESs potential supply. In order to support urban planning and develop sustainable cities, it is essential to quantify the potential supply of ecosystem services considering local scale and characteristics.</p>


Sign in / Sign up

Export Citation Format

Share Document