scholarly journals Ethnopedological Studies to Characterize Neosols at the Brazilian Semiarid Region

2019 ◽  
Vol 11 (4) ◽  
pp. 536
Author(s):  
Jucirema Ferreira da Silva ◽  
Jeane Cruz Portela ◽  
Nildo da Silva Dias ◽  
Cezar Augusto Medeiros Rebouças ◽  
Francisco Ernesto Sobrinho ◽  
...  

The ethnopedological approach to soil characterization presents great challenges, since the understanding of the systems occurs through the knowledge acquired by the man in his coexistence with agroecosystems. The aim of the present research was to characterize the agricultural soils through morphological, physical and chemical analysis, using ethnopedological studies in the ‘Santa Agostinha’ Settlement Project, Caraúbas-RN, Brazil. Five areas were defined for study in the soil/landscape relation: i) area with cashew cultivation; ii) area of pasture; iii) area of crops in consortium; iv) agroforestry; and v) preserved forest, used as the reference. Participatory workshops, exchanges and classifications (from the locals and formal) were carried out with the analysis of the morphological, physical and chemical attributes of the studied soils in the layers of 0.00-0.10, 0.10-0.20 and 0.20-0.30 m. The results of the ethicist classification, based on the attributes evaluation were: Quartzarenic latosol NEOSOL (cashew area); Regolitic euthrofic NEOSOL (pasture area); Ortic quartzarenic fragiudult NEOSOL (intercropping area); typical quartzarenic ortic NEOSOL (agroforestry area and typical hydromorphic quartzarenic NEOSOL that presented a close relation with the emicist classification (from the local people). The observation of the different soil types in the landscape, due to the stratification of the environments, allowed the growers to identify characteristics associated with soil potentials and restrictions and, consequently, the correct management to be adopted. The experiences of local growers in the participatory workshops provided an exchange of popular and scientific knowledge, as well as new perspectives of coexistence with the semiarid.

2018 ◽  
Vol 11 (1) ◽  
pp. 527
Author(s):  
Thais Cristina de Souza Lopes ◽  
Jeane Cruz Portela ◽  
Stefeson Bezerra de Melo ◽  
Thamirys Duarte Ávila ◽  
Francisco Wellington Andrade da Silva ◽  
...  

Soil structure affects plant growth factors in agroecosystems. The relationships of these factors with soil texture and chemical attributes are important to differentiate environments. The objective of this work was to evaluate the relationship of soil structural attributes with physical and chemical attributes of different soils to differentiate environments, using multivariate statistics. The research was carried out in the Terra da Esperança Settlement Project, in Governador Dix-Sept Rosado, RN, semiarid region of Brazil. Ten soil profiles were evaluated: Haplustepts in a conventional area (1CA); Haplustepts in a collective area with (2CA); Haplustepts in an agroecological area with native forest (3AGRO); Eutrustox in a native forest (4NF); Calciustolls in a conventional area of pasture (5CAP); Haplustepts in a native forest (6NF); Haplustepts in an native forest (7NF); Usticfluvents in a permanent conservation area with Licania rigida (8PPA); Haplustepts in a native forest (9MN); and Haplustepts in a collective area with Spondias spp. (10SP). Ten soil samples were collected and analyzed by horizons in volumetric rings and in soil blocks (aggregate analysis), with three replications. Structural, physical, and chemical attributes were evaluated. The data were subjected to multivariate statistical analysis, using correlation matrix, cluster analysis, and factorial analysis considering the factors as principal components. According to the factorial analysis, Factor 1 (F1) and Factor 2 (F2)—F1 consisting of clay, Ca2+, Na+, sum of bases, and base saturation (V), and F2 consisting of cation exchange capacity (CEC), total organic carbon, macroporosity, particle density, K+, and microporosity—were essential to differentiate the environments. The cluster analysis formed four groups. The structural groups showed greater similarity, denoting the relationship between source material and land use, followed by the chemical groups P, K+, CEC, Ca2+, V, and pH for the Calciustolls; the structural weighted mean diameter, geometric mean diameter, soil aggregates larger than 2 mm, plasticity index, and plasticity limit for the Eutrustox; and the physical and chemical attributes EC, Na+, Silt, macroporosity, total calculated porosity, aluminum saturation, total sand, volumetric moisture, Mg2+ and particle density for the Haplustepts and the Usticfluvents. The clay fraction presented correlation with chemical attributes (F1) for the distinction of soil classes and land uses. The soil classes presented eutrophic character (V ≥ 50%) as a function of the Na+ and Ca2+ contents, including the Eutrustox (4NF), despite its lower contents when compared to the other soil classes. This is a local peculiarity due to the climatic pattern of the Brazilian semiarid region.


2018 ◽  
Vol 10 (11) ◽  
pp. 190
Author(s):  
Ana Karenina Fernandes de Sousa Ribeiro ◽  
Jeane Cruz Portela ◽  
Rafael Oliveira Batista ◽  
Carolina Malala Martins Souza ◽  
Joseane Dunga da Costa ◽  
...  

The semiarid region is extremely fragile to anthropogenic actions. Thus, the objective of this study is to evaluate the physical and chemical attributes of soils with different agricultural uses. The research was carried out in the municipality of Governador Dix-Sept Rosado. Fertility and physical analyses were performed. The results were interpreted by multivariate analysis. The soils that presented a eutrophic character were influenced by lithology. In the Cambissolo (Haplustepts), there was an increase in the limits of liquidity and plasticity due to the increase of the clay fraction and total organic carbon. By the particle size analysis, the profiles presented variations in textural classes. We concluded that the physical attributes moisture, liquidity limit, plasticity limit, clay plasticity index, thin sand and the chemical attributes pH, (H + Al), V and PST were the most sensitive for the distinction of environments. The studied areas presented acidity reactions to alkalinity with presence of Al3+, (H + Al) and high salinity.


2017 ◽  
Vol 38 (4Supl1) ◽  
pp. 2419
Author(s):  
Marden Daniel Espinoza Guardiola ◽  
José Frutuoso Vale Júnior ◽  
Edmilson Evangelista da Silva ◽  
Celeste Queiroz Rossi ◽  
Marcos Gervasio Pereira

The crop-livestock integration (CLI) and crop-livestock-forest integration (CLFI) management systems, have been shown to be viable approaches for increasing carbon sequestration in soils, resulting in the improvement of physical and chemical soil attributes. The objective of this study was to evaluate the chemical attributes and organic matter in soils under Natural Forest (NF) converted to different uses and managed differently: rotational pasture area (PAST), crop-livestock integration (CLI), and crop-livestock-forest integration (CLIF). The research was conducted at the São Paulo farm, in Iracema, located in the south-central region of the state of Roraima, Brazil. The studied soil type was classified as Ultisol. Soil samples were taken by opening ditches and examining layers at 0.1-m depth intervals from surface to 0.60-m depth. Total organic carbon (TOC), chemical and granulometric fractionation of soil organic matter (SOM), oxidizable fractions, and light organic matter in water were analyzed. Our results showed low levels of the analyzed chemical elements, a characteristic of a soil with low natural fertility. This matches conditions inherent in source material, weathered by high rainfall, a warm and humid climate, and flat topographic relief. In the 0-0.1 m layer, the PAST and CLI systems had the highest TOC contents relative to the other systems studied. At other depths, there were no statistical differences among TOC levels. The highest concentration of C in the particulate fraction (POC) was noted in the surface layer in all management systems. The pasture system had the highest concentration POC in the top 0.10 m. Our results also showed that the upper 0.10 m of soil in NF contained the lowest content of organic carbon associated with mineral (MOC) relative to the managed agrosystems. In addition, humin provided the largest contribution to SOM in all evaluated management systems. The crop-livestock integration (CLI) and crop-livestock integration forest (CLIF) systems, emerged as a strong alternative to carbon incorporation and subsequently the improvement of physical and chemical soil attributes. The objective of this work to evaluate the chemical attributes and organic matter in soils under Natural forest (NF) converted into different use and management systems: pasture (PAST), crop-livestock Integration (CLI) and crop-livestock Integration forest (CLIF). The research was conducted at São Paulo farm in Iracema, located in the Center-South region of the State of Roraima, Brazil. The soil studied was classified as Argissolo Amarelo Distrófico. The samples were taken by the opening of trenches in layers of 0-0.10, 0.10- 0.20, 0.20- 0.40, and 0.40-0.60 m depth. Total organic carbon (TOC), chemical and granulometric fractionation of soil organic matter (SOM), oxidizable fractions and organic matter in water were analyzed. The results showed low levels of the analyzed chemical elements which characterizes soils with low natural fertility, which matches the conditions of the source material, high rainfall and regional temperature, as well as the flat local relief. In the 0-0.1 m layer, the PAST and CLI systems had the highest TOC contents when compared to the other systems studied, in the other depths there were no statistical differences between the TOC levels. The highest amount of C in the particulate fraction (COp) was verified in the surface layer in all evaluated management systems. The pasture area was the system with the greatest contribution of COp to the depth of 0-0.0 m. In relation to the carbon content associated with minerals (COam), the results showed that the depth of 0-0.05 m NF area presented the lowest levels when compared to the other systems. Regarding the humic substances, there was a larger contribution of humin in all evaluated systems.


2021 ◽  
Vol 9 (2) ◽  
pp. 488
Author(s):  
Jefferson Ferreira da Silva ◽  
Stephany Diolino Cunha ◽  
Henyo Alves Rodrigues Dias ◽  
Matheus Da Silva Araújo ◽  
Ednaldo Cândido Rocha ◽  
...  

The objectives of this study were: to evaluate the leaching potential of B in a Latossolo Vermelho-Amarelo (Oxisol) as a function of sources and doses of this micronutrient; among the sources tested (boric acid, ulexite and the commercial source H2 Boro), to determine the one with the lowest leaching potential; to evaluate leaching losses at different doses in each soil layer evaluated; and to identify chemical and physical variables of soils that influence B leaching. For that, two experiments were conducted in a greenhouse. The first one tested B leaching in the soil, with the three sources under study and five doses of B (0; 12; 24; 36; and 48 kg ha-1), whereas the second experiment evaluated the influence of soil physical and chemical attributes on B leaching using soils randomly collected in 22 localities in southeastern Goiás, Brazil. Regardless of the dose applied, ulexite led to the lowest soluble B content in the profile of the analyzed soils and also in the leachate. Boric acid was the only source that showed a different behavior in relation to B content in the different soil layers and in the leachate. In the soil layer from 21 to 30 cm, ulexite is the source with the lowest soluble B content. The behaviors of the more soluble sources, in this case boric acid and H2 Boro (H2 Agrosciences - Monoethanolamine borate), regardless of the dose, are very similar, being highly leachable in the profile of the Oxisol used. Soils with clayey texture and higher values of H+Al and CEC were able to retain higher B contents in the upper portion their profiles (layers from 0 to 10 cm and 11 to 20 cm), but soils with sandy texture and higher values of sum of bases showed greater B losses by leaching.


2017 ◽  
Vol 38 (4Supl1) ◽  
pp. 2419
Author(s):  
Marden Daniel Espinoza Guardiola ◽  
José Frutuoso Vale Júnior ◽  
Edmilson Evangelista da Silva ◽  
Celeste Queiroz Rossi ◽  
Marcos Gervasio Pereira

The crop-livestock integration (CLI) and crop-livestock-forest integration (CLFI) management systems, have been shown to be viable approaches for increasing carbon sequestration in soils, resulting in the improvement of physical and chemical soil attributes. The objective of this study was to evaluate the chemical attributes and organic matter in soils under Natural Forest (NF) converted to different uses and managed differently: rotational pasture area (PAST), crop-livestock integration (CLI), and crop-livestock-forest integration (CLIF). The research was conducted at the São Paulo farm, in Iracema, located in the south-central region of the state of Roraima, Brazil. The studied soil type was classified as Ultisol. Soil samples were taken by opening ditches and examining layers at 0.1-m depth intervals from surface to 0.60-m depth. Total organic carbon (TOC), chemical and granulometric fractionation of soil organic matter (SOM), oxidizable fractions, and light organic matter in water were analyzed. Our results showed low levels of the analyzed chemical elements, a characteristic of a soil with low natural fertility. This matches conditions inherent in source material, weathered by high rainfall, a warm and humid climate, and flat topographic relief. In the 0-0.1 m layer, the PAST and CLI systems had the highest TOC contents relative to the other systems studied. At other depths, there were no statistical differences among TOC levels. The highest concentration of C in the particulate fraction (POC) was noted in the surface layer in all management systems. The pasture system had the highest concentration POC in the top 0.10 m. Our results also showed that the upper 0.10 m of soil in NF contained the lowest content of organic carbon associated with mineral (MOC) relative to the managed agrosystems. In addition, humin provided the largest contribution to SOM in all evaluated management systems. The crop-livestock integration (CLI) and crop-livestock integration forest (CLIF) systems, emerged as a strong alternative to carbon incorporation and subsequently the improvement of physical and chemical soil attributes. The objective of this work to evaluate the chemical attributes and organic matter in soils under Natural forest (NF) converted into different use and management systems: pasture (PAST), crop-livestock Integration (CLI) and crop-livestock Integration forest (CLIF). The research was conducted at São Paulo farm in Iracema, located in the Center-South region of the State of Roraima, Brazil. The soil studied was classified as Argissolo Amarelo Distrófico. The samples were taken by the opening of trenches in layers of 0-0.10, 0.10- 0.20, 0.20- 0.40, and 0.40-0.60 m depth. Total organic carbon (TOC), chemical and granulometric fractionation of soil organic matter (SOM), oxidizable fractions and organic matter in water were analyzed. The results showed low levels of the analyzed chemical elements which characterizes soils with low natural fertility, which matches the conditions of the source material, high rainfall and regional temperature, as well as the flat local relief. In the 0-0.1 m layer, the PAST and CLI systems had the highest TOC contents when compared to the other systems studied, in the other depths there were no statistical differences between the TOC levels. The highest amount of C in the particulate fraction (COp) was verified in the surface layer in all evaluated management systems. The pasture area was the system with the greatest contribution of COp to the depth of 0-0.0 m. In relation to the carbon content associated with minerals (COam), the results showed that the depth of 0-0.05 m NF area presented the lowest levels when compared to the other systems. Regarding the humic substances, there was a larger contribution of humin in all evaluated systems.


2018 ◽  
Vol 10 (11) ◽  
pp. 501
Author(s):  
Luiz Eduardo Vieira de Arruda ◽  
Jeane Cruz Portela ◽  
José Francismar de Medeiros ◽  
Rafael Oliveira Batista ◽  
Stefeson Bezerra de Melo ◽  
...  

Different soil managements evidence soil properties, contributing positively or negatively to its quality. A study was conducted in the city of Martins, Rio Grande do Norte (RN) state, in four cultivated areas: corn intercropped with beans (CICB), cassava monocrop (CAMO), bean monocrop (BEMO) and native forest (NF, considered as the original soil condition). This study aimed to evaluate changes in the chemical properties of an Oxisol in function of different agricultural uses (N, P, K+, Ca2+, Mg2+, Na1+, Al3+, pH, EC, H+Al, BS, V, CEC, t, m, OM and ESP) and the distinction of environments using multivariate analysis. The sampling was performed up to 30 cm deep. Soil pH values were kept close to 5.5, except for the area with corn intercropped with beans, whose values were higher than 7.0. Corn intercropped with beans had the highest concentrations of K+, Na+ and Ca2+ on the soil, with a direct impact on base sum. Different uses modified soil chemical properties. Corn intercropped with beans differs from the other treatments due to the addition of solid waste to the soil. Principal component analyses showed pH and exchangeable bases are the most sensitive indicators of environment separation.


Sign in / Sign up

Export Citation Format

Share Document