scholarly journals Influence of Nitrogen Fertilizer Application on Grain Yield, Nitrogen Uptake Efficiency, and Nitrogen Use Efficiency of Bread Wheat (Triticum aestivum L.) Cultivars in Eastern Ethiopia

2017 ◽  
Vol 9 (7) ◽  
pp. 202
Author(s):  
Nano Alemu Daba

The study was conducted in Eastern Ethiopia, namely Meta and Tullo districts, during the 2015 cropping season to determine the effect of N fertilizer levels on N uptake, N use efficiency (NUE) and grain yield on bread wheat cultivars. Factorial combinations of five N levels (0, 30, 60, 90, and 120 kg N ha-1) and four bread wheat cultivars (Danda’a, Digalu, Kakaba and local cultivar) were laid out as a randomized complete block design (RCBD) with three replications. The interactions of sites, N levels, and cultivars significantly (p ≤ 0.01) affected grain yield (GY), nitrogen uptake by grains, total nitrogen uptake, nitrogen uptake efficiency (NUpE) and nitrigen use efficiency for grain yield (NUEGY). Main effects of sites, N levels and cultivars had significant (p < 0.01) effect on grain and straw N contents, straw N uptake, N biomass production efficiency, N utilization efficiency (NUtE) and nitrogen harvest index (NHI). The cultivar Kakaba at rate of 90 kg N ha-1 produced the highest grain yield (4880 kg ha-1) in Tullo, which was statistically similar with the grain yield (4816 kg ha-1) obtained from the cultivar Digalu with 120 kg N ha-1 in Meta district. The NUEGY was higher with values of 24.2 and 24.1 kg grain kg-1 N in Tullo and Meta districts, respectively, for Digalu cultivar at 30 kg N ha-1 application rate than the remaining N levels and variety interactions at both sites. Cultivars variations in NUEGY under low N application levels were mainly due to higher variations in NUpE than in NUtE. Therefore, there is a need for exploration of the effectiveness of various combinations of N rates with time of applications for improvements of N-use efficiency traits and cost effectiveness in improved wheat cultivars production.

Agronomy ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 23
Author(s):  
Ming Du ◽  
Wenzhong Zhang ◽  
Jiping Gao ◽  
Meiqiu Liu ◽  
Yan Zhou ◽  
...  

Although nitrogen (N), phosphorus (P), and potassium (K) co-application improves crop growth, yield, and N use efficiency (NUE) of rice, few studies have investigated the mechanisms underlying these interactions. To investigate root morphological and physiological characteristics and determine yield and nitrogen use parameters, rhizo-box experiments were performed on rice using six treatments (no fertilizer, PK, N, NK, NP, and NPK) and plants were harvested at maturity. The aboveground biomass at the elongating stage and grain yield at maturity for NPK treatment were higher than the sum of PK and N treatments. N, P, and K interactions enhanced grain yield due to an increase in agronomic N use efficiency (NAE). The co-application of N, P, and K improved N uptake and N recovery efficiency, exceeding the decreases in physiological and internal NUE and thereby improving NAE. Increases in root length and biomass, N uptake per unit root length/root biomass, root oxidation activity, total roots absorption area, and roots active absorption area at the elongating stage improved N uptake via N, P, and K interactions. The higher total N uptake from N, P, and K interactions was due to improved root characteristics, which enhanced the rice yield and NUE.


HortScience ◽  
2008 ◽  
Vol 43 (2) ◽  
pp. 575-579 ◽  
Author(s):  
Silvia Jiménez Becker ◽  
Maria Teresa Lao ◽  
Mari Luz Segura

Adjusting fertility programs according to peak demand periods will help prevent periodic nutrient disorders during crop growth, allowing enhanced use efficiency of water and fertilization. The objectives of this article were to investigate 1) the evolution of the changes in the concentration of nitrate and ammonium in the recycled solution with different N-NO3 –/N-NH4 + ratios; 2) the influence of the N form supply (N-NO3 – or N-NH4 +) on the nitrogen uptake, the nitrogen:water uptake ratio, and nitrogen use and uptake efficiency; and 3) the development of empirical models that would allow the prediction of nitrogen nutritional needs of Dieffenbachia amoena to increase the N use efficiency in a recycled system. To achieve these aims, N uptake has been correlated to climate parameters such as temperature, vapor pressure deficit and global radiation, and growth parameters such as leaf area index. The trial was carried out with Dieffenbachia amoena plants growing in a recycled system with expanded clay as substrate. The crop was placed in an INSOLE (Buried Solar Greenhouse), the plants being supplied with equal amounts of N, differing in the percentage of the N form applied (NO3 –:NH4 +): TA (100:0), TB (50:50), and TC (0:100). The nitrogen form generated important changes in the pH and nitrate and ammonium concentration in nutritive solution during the recirculating solution. In N-NO3 – treatment, pH increased and nitrate concentration showed a tendency to drop slightly. N-NH4 + treatment showed an abrupt N-NH4 + concentration decrease, and N-NO3 – concentration increased along with a pH drop. Also, the nitrogen form applied to the Dieffenbachia amoena crop affects nitrogen uptake. Nitrogen uptake rates and nitrogen uptake concentration were higher in the plants supplied with N-NH4 + or NO3 –+NH4 + than in the plants provided with N-NO3 – alone. The supply of a combination of 50:50 NO3 –+NH4 + improved the N use efficiency. The study also indicated the possibility of predicting the N uptake rate and N uptake concentration using the proposed models.


2016 ◽  
Vol 96 (3) ◽  
pp. 392-403 ◽  
Author(s):  
Dilip K. Biswas ◽  
Bao-Luo Ma

A two-year (2010–2011) field experiment was undertaken to examine the effect of nitrogen (N) rate (0, 100, 150, and 200 kg N ha−1) and N source (urea, calcium ammonium nitrate; ammonium sulphate) on canopy reflectance, chlorophyll pigments, photosynthesis, yield, grain quality, and N-use efficiency in corn. However, the physiological observations were made only in 2011. We found that stover biomass was unaffected by higher N rate beyond 150 kg N ha−1 in both years. Higher N rates did not provide a yield advantage as compared to 150 kg N ha−1 in 2010, but the highest grain yield was produced with 200 kg N ha−1 in 2011. The higher grain yield by N application was attributed to a greater kernel size in both years. Corn stover [N] was found to increase with increasing N rates in both years. Kernel [N] only responded to the high N rate in 2010. There was no change in the kernel density as affected by N rate in both years. An increased N addition resulted in a decrease in both N-uptake efficiency and agronomic-N use efficiency in both years. There was an inconsistent effect of N source on yield and N use efficiency indices in the corn over two years.


2019 ◽  
Vol 22 (2) ◽  
pp. 63-69
Author(s):  
ATMS Hossain ◽  
F Rahman ◽  
PK Saha

A field experiment was conducted on validation of prilled urea (PU) and urea super granule (USG) applied by applicators on yield and nitrogen use efficiency during Boro 2014 season at Bangladesh Rice Research Institute (BRRI) farm, Gazipur (AEZ 28). Six treatment combinations of different N doses and methods of N application were tested to compare urea-N application by PU and USG applicator for rice yield, N uptake and N use efficiency over urea broadcasting. Application of N as PU or USG through applicator has same effect on grain yield, N uptake and N use efficiency compared with urea broadcasting. Statistically similar grain yield were observed with N application as PU or USG @ 78 kg N ha-1 by applicator which was comparable with urea broadcasting @ 135 kg N ha-1. The N concentration and uptake in both panicle initiation (PI) and maturity stage were higher in USG deep placement than PU deep placement by applicators but the difference was not significant. Although agronomic use efficiency (AUE) of N was slightly higher in PU than USG applied by applicators but the recovery efficiency (RE) of N was higher in USG than PU. Bangladesh Rice j. 2018, 22(2): 63-69


2006 ◽  
Vol 144 (1) ◽  
pp. 69-83 ◽  
Author(s):  
DILLIP KUMAR SWAIN ◽  
BURLA CHANDRA BHASKAR ◽  
PRAMILA KRISHNAN ◽  
KURKURI SRINIVASA RAO ◽  
SANGRAM KESHARI NAYAK ◽  
...  

Field experiments were conducted at the village Kasiadihi, Dhenkanal district, Orissa, India during wet seasons 2001, 2002 and 2003 under non water-stressed conditions (0–25 cm standing water) to assess variability in N uptake and utilization by medium and late duration rice varieties. The N rates were 0, 40, 80 and 120 kg N/ha applied as urea in four equal splits at transplanting, active tiller initiation, panicle initiation and flowering stages. The grain yield response was up to 80 kg N/ha. The optimum grain yield attainable by the efficient medium duration varieties was 4·5 t/ha. The N efficient late duration varieties produced optimum grain yield of 5·8 t/ha. The relationship for total dry matter and grain yield production between N fertilized (40, 80 and 120 kg N/ha) and non-fertilized treatments were all significant, suggesting cultivar selection under optimum N fertilized conditions. The difference in optimum yield of the medium and late duration varieties was due to the differences in the amount of N uptake and its use efficiency by the plant for grain production. There was a curvilinear relationship between grain yield and N use efficiency for grain production. The relationship between N use efficiency for grain production and N contents of leaf, stem and grain at maturity was quadratic. The optimum plant N use efficiency of medium duration varieties was 49 kg grain/kg N uptake, achieved with leaf, stem and grain N contents of 10, 8 and 14 g/kg, respectively, at maturity. For late duration varieties, the optimum plant N use efficiency was 68 kg grain/kg N uptake and it was maintained with leaf and stem N content of 4·0 g/kg each and grain N content of 9·0 g/kg at maturity. The N content in plant organs could be the selection guide used to obtain efficient rice varieties.


2021 ◽  
Vol 10 (1) ◽  
Author(s):  
Temesgen Godebo ◽  
Fanuel Laekemariam ◽  
Gobeze Loha

AbstractBread wheat (Triticum aestivum L.) is one of the most important cereal crops in Ethiopia. The productivity of wheat is markedly constrained by nutrient depletion and inadequate fertilizer application. The experiment was conducted to study the effect of nitrogen (N) and potassium (K) fertilizer rates on growth, yield, nutrient uptake and use efficiency during 2019 cropping season on Kedida Gamela Woreda, Kembata Tembaro Zone Southern Ethiopia. Factorial combinations of four rates of N (0, 23, 46 and 69 kg Nha−1) and three rates of K2O (0, 30 and 60 kg Nha−1) in the form of urea (46–0-0) and murate of potash (KCl) (0-0-60) respectively, were laid out in a randomized complete block design with three replications. The results showed that most parameters viz yield, yield components, N uptake and use efficiency revealed significant differences (P < 0.05) due to interaction effects of N and K. Fertilizer application at the rate of 46 N and 30 kg K ha−1 resulted in high grain yield of 4392 kg ha− 1 and the lowest 1041 from control. The highest agronomic efficiency of N (52.5) obtained from the application of 46 kg N ha−1. Maximum physiological efficiency of N (86.6 kg kg−1) and use efficiency of K (58.6%) was recorded from the interaction of 46 and 30 kg K ha−1. Hence, it could be concluded that applying 46 and 30 kg K ha−1was resulted in high grain yield and economic return to wheat growing farmers of the area. Yet, in order to draw sound conclusion, repeating the experiment in over seasons and locations is recommended.


Agronomy ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 1241
Author(s):  
Peter Omara ◽  
Lawrence Aula ◽  
Fikayo B. Oyebiyi ◽  
Elizabeth M. Eickhoff ◽  
Jonathan Carpenter ◽  
...  

Biochar (B) has shown promise in improving crop productivity. However, its interaction with inorganic nitrogen (N) in temperate soils is not well-studied. The objective of this paper was to compare the effect of fertilizer N-biochar-combinations (NBC) and N fertilizer (NF) on maize (Zea mays L.) grain yield, N uptake, and N use efficiency (NUE). Trials were conducted in 2018 and 2019 at Efaw and Lake Carl Blackwell (LCB) in Oklahoma, USA. A randomized complete block design with three replications and ten treatments consisting of 50, 100, and 150 kg N ha−1 and 5, 10, and 15 Mg B ha−1 was used. At LCB, yield, N uptake, and NUE under NBC increased by 25%, 28%, and 46%, respectively compared to NF. At Efaw, yield, N uptake, and NUE decreased under NBC by 5%, 7%, and 19%, respectively, compared to NF. Generally, results showed a significant response to NBC at ≥10 Mg B ha−1. While results were inconsistent across locations, the significant response to NBC was evident at LCB with sandy loam soil but not Efaw with silty clay loam. Biochar application with inorganic N could improve N use and the yield of maize cultivated on sandy soils with poor physical and chemical properties.


2013 ◽  
Vol 148 ◽  
pp. 15-23 ◽  
Author(s):  
Jianquan Qin ◽  
S.M. Impa ◽  
Qiyuan Tang ◽  
Shenghai Yang ◽  
Jian Yang ◽  
...  

2006 ◽  
Vol 290 (1-2) ◽  
pp. 115-126 ◽  
Author(s):  
Zhenan Hou ◽  
Pinfang Li ◽  
Baoguo Li ◽  
Jiang Gong ◽  
Yanna Wang

Sign in / Sign up

Export Citation Format

Share Document