scholarly journals Inactivation of Baroduric Bacteria Isolated by High Hydrostatic Pressure from Pickled Cowpea

2012 ◽  
Vol 1 (3) ◽  
pp. 101 ◽  
Author(s):  
Xuemei Li ◽  
Dong Zhao ◽  
Anjun Chen ◽  
Tiantian Lin ◽  
Biao Pu

<p>In this study, <em>Pickled Cowpea</em>, a typical lactic acid fermented vegetable in Sichuan, China, was used as samples to study both species and inactivation of baroduric bacteria isolated by HHP treatment under different pressure levels and different pressure holding time. 16S rDNA gene sequence, amplified using genomic DNA of 4 baroduric bacteria from <em>Pickled Cowpea</em> as templates, were sequenced and then were identified based on the sequence similarity and homology analysis, as <em>B. licheniformis</em>, <em>B</em>. <em>subtilis, B</em>. <em>sonorensis and B</em>. <em>pumilus</em>. The pressure resistance of the 4 strains are compared under pressure from 300 to 500 MPa with holding time from 3 to 25 min. <em>B</em>. <em>pumilus </em>which has higher pressure resistance can be selected as indicator bacteria for applying HHP treatment to <em>Pickle </em>production.</p>

Foods ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 667
Author(s):  
Chenxiao Wang ◽  
Hao Yin ◽  
Yanyun Zhao ◽  
Yan Zheng ◽  
Xuebing Xu ◽  
...  

This work aimed to improve the functional properties of soybean protein isolate (SPI) by high hydrostatic pressure (HHP) and develop SPI incorporated yogurt. Response surface methodology (RSM) was used to optimize the HHP treatment parameters, including pressure, holding time, and the ratio of SPI/water. Water holding capacity, emulsifying activity index, solubility, and hardness of SPI gels were evaluated as response variables. The optimized HPP treatment conditions were 281 MPa of pressure, 18.92 min of holding time, and 1:8.33 of SPI/water ratio. Water and oil holding capacity, emulsifying activity, and stability of SPI at different pH were improved. Additionally, relative lipoxygenase (LOX) activity of HHP treated SPI (HHP-SPI) was decreased 67.55 ± 5.73%, but sulphydryl group content of HHP-SPI was increased 12.77%, respectively. When incorporating 8% of SPI and HHP-SPI into yogurt, the water holding capacity and rheological properties of yogurt were improved in comparison with yogurt made of milk powders. Moreover, HHP-SPI incorporated yogurt appeared better color and flavor.


2019 ◽  
Vol 78 ◽  
pp. 171-178 ◽  
Author(s):  
Elisa Gayán ◽  
Nele Rutten ◽  
Jan Van Impe ◽  
Chris W. Michiels ◽  
Abram Aertsen

2014 ◽  
Vol 2014 ◽  
pp. 1-5 ◽  
Author(s):  
Wen-Si Tan ◽  
Nina Yusrina Muhamad Yunos ◽  
Pui-Wan Tan ◽  
Nur Izzati Mohamad ◽  
Tan-Guan-Sheng Adrian ◽  
...  

N-Acyl homoserine lactone (AHL) serves as signaling molecule for quorum sensing (QS) in Gram-negative bacteria to regulate various physiological activities including pathogenicity. With the aim of isolating freshwater-borne bacteria that can cause outbreak of disease in plants and portrayed QS properties, environmental water sampling was conducted. Here we report the preliminary screening of AHL production usingChromobacterium violaceumCV026 andEscherichia coli[pSB401] as AHL biosensors. The 16S rDNA gene sequence of isolate M009 showed the highest sequence similarity toPantoea stewartiiS9-116, which is a plant pathogen. The isolatedPantoeasp. was confirmed to produceN-3-oxohexanoyl-L-HSL (3-oxo-C6-HSL) through analysis of high resolution mass tandem mass spectrometry.


2012 ◽  
Vol 56 (3) ◽  
pp. 267-270
Author(s):  
Krzysztof Niemczuk ◽  
Marian Truszczyńsk ◽  
Monika Szymańska-Czerwińska

Abstract Changes in the taxonomy of the order Chlamydiales, after its separation from the order Rickettsiales, were presented. These changes resulted in the recognition of the following families: Chlamydiaceae, Chlavichlamydiaceae, Criblamydiaceae, Parachlamydiaceae, Piscichlamydiaceae, Rhabdochlamydiaceae, Simkaniaceae, and Waddliaceae. Other described changes concerned particularly the family Chlamydiaceae. Its genus Chlamydia was divided into Chlamydia and Chlamydophila. However, in the following years, a revision to the single original genus was made, based upon phylogenetic analysis of 16S and 23S rRNA genes of the strains belonging to these two taxonomic units. The review also discusses other families outside the family Chlamydiaceae, which contain so-called Chlamydia-related or Chlamydia-like organisms. Members of each family share a 16S rDNA gene sequence similarity >90%. Furthermore, characterisation of the pathogenecity is presented, focusing especially on the representatives of the family Chlamydiaceae, which cause animal infections, and describing their zoonotic potential. Available data on this topic, connected with the representatives of other families, were mentioned.


2013 ◽  
Vol 166 (1) ◽  
pp. 65-71 ◽  
Author(s):  
Dietrich Vanlint ◽  
Brecht J.Y. Pype ◽  
Nele Rutten ◽  
Kristof G.A. Vanoirbeek ◽  
Chris W. Michiels ◽  
...  

2006 ◽  
Vol 56 (9) ◽  
pp. 2119-2124 ◽  
Author(s):  
Matthias Scheuermayer ◽  
Tobias A. M. Gulder ◽  
Gerhard Bringmann ◽  
Ute Hentschel

A marine bacterium, strain Pol012T, was isolated from the Mediterranean sponge Axinella polypoides and subsequently characterized as belonging to subphylum 1 of the phylum ‘Verrucomicrobia’. Strain Pol012T was non-motile, Gram-negative, coccoid or rod-shaped and red in colour. The menaquinones MK-8 and MK-9 were detected. The G+C content of the genomic DNA was 50.9 mol%. Growth was possible at temperatures between 8 and 30 °C and at pH values between 6.8 and 8.2. The closest cultured relative of strain Pol012T was Akkermansia muciniphila (83 % sequence similarity), while the closest environmental 16S rRNA gene sequence was the marine clone Arctic96BD-2 (95 % sequence similarity). Strain Pol012T is the first marine pure-culture representative of ‘Verrucomicrobia’ subphylum 1 and represents a novel genus and species, for which the name Rubritalea marina gen. nov., sp. nov. is proposed. The type strain is Pol012T (=DSM 177716T=CIP 108984T).


2007 ◽  
Vol 57 (9) ◽  
pp. 2155-2162 ◽  
Author(s):  
Jian-Shen Zhao ◽  
Dominic Manno ◽  
Sonia Thiboutot ◽  
Guy Ampleman ◽  
Jalal Hawari

Two strains belonging to the genus Shewanella, HAW-EB2T and HAW-EB5T, were isolated previously from marine sediment sampled from the Atlantic Ocean, near Halifax harbour in Canada, for their potential to degrade explosive hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX). In the present study, strains HAW-EB2T and HAW-EB5T were found to display high 16S rRNA gene sequence similarity (90–99.5 %) to species of Shewanella, but their gyrB sequences were significantly different from each other and from species of Shewanella (79–87.6 %). Furthermore, DNA–DNA hybridization showed that the genomic DNA of the two strains was only 22 % related and showed less than 41 % relatedness to closely related species of Shewanella. In comparison to other species of Shewanella, strains HAW-EB2T and HAW-EB5T were also unique in some phenotypic properties such as activities of β-galactosidase and tyrosine arylamidase and the ability to metabolize certain organic acids and sugars. Both strains HAW-EB2T and HAW-EB5T utilize malate, valerate, peptone and yeast extract as sole carbon and energy sources. The major membrane fatty acids of the two strains were C14 : 0, iso-C15 : 0, C16 : 0, C16 : 1 ω7, C18 : 1 ω7 and C20 : 5 ω3 and their major quinones were Q-7, Q-8 and MK-7. On the basis of these results, strain HAW-EB2T (=NCIMB 14238T =CCUG 54553T) is proposed as the type strain of Shewanella canadensis sp. nov. and strain HAW-EB5T (=NCIMB 14239T =CCUG 54554T) is proposed as the type strain of Shewanella atlantica sp. nov.


2007 ◽  
Vol 57 (4) ◽  
pp. 870-872 ◽  
Author(s):  
Akihito Endo ◽  
Sanae Okada

Two strains of lactic acid bacteria, strains NRIC 0689T and NRIC 0690, were isolated from a compost of distilled shochu residue in Japan. The isolates showed quite low sequence similarity to known species of lactic acid bacteria on the basis of 16S rRNA gene sequence; the highest sequence similarities to NRIC 0689T were shown by the type strains of Lactobacillus satsumensis, L. plantarum, L. hilgardii, L. buchneri and L. parabuchneri (92.9, 92.9, 92.8, 92.6 and 92.5 %, respectively). The isolates formed a distinct subcluster in the Lactobacillus casei–Pediococcus phylogenetic cluster. Levels of DNA–DNA relatedness revealed that the isolates belonged to the same taxon. Therefore, the isolates represent a novel species, for which the name Lactobacillus composti sp. nov. is proposed. The type strain is NRIC 0689T (=JCM 14202T=DSM 18527T).


2013 ◽  
Vol 781-784 ◽  
pp. 1599-1602 ◽  
Author(s):  
Yue Hua Jiao ◽  
Lan Wei Zhang ◽  
Fei Liu

In this study, API 50CH strips and 16S rRNA gene sequence analysis were used to determine the species and genus of strain LD33 isolated from traditional dairy products, and the phylogenetic tree was constructed by MEGA4 software with Neighbor-Joining method analysis, the results showed that LD33 had a closest relationship with Enterococcus faecalis ATCC19433T (DQ411814), there was 100% sequence similarity between them.


Sign in / Sign up

Export Citation Format

Share Document