scholarly journals Geochemical Characterization of Boula Ibi Granitoids and Implications in Geodynamic Evolution

2019 ◽  
Vol 11 (4) ◽  
pp. 13
Author(s):  
Jean Paul Sep Nlomngan ◽  
Joseph Penaye ◽  
Rigobert Tchameni ◽  
Sebastien Owona ◽  
Augustin Patrice Moussango Ibohn ◽  
...  

Petrographical and geochemical study, consistent with observed field relations show that the Boula Ibi syn- and post-kinematic granitoids in north Cameroon, occurred in banded gneisses. These syn- and post-kinematic granitoids consist of deformed monzonites typified by its granoblastic texture, diorites, syenites, granites and basic xenoliths of dioritic and monzonitic composition. They are calc-alkaline, hyperpotassic, metaluminous to slightly peraluminous and I-Type granitoids. They display high content in Fe2O3 + MgO + CaO (2.16 – 23.24 %) that reveals their intermediate affinity, magnesian and metaluminous character whilst the low A/CNK (< 1.1) content indicates their mantle origin. Harker diagrams and La/Sm vs La define the fractional crystallization and partial melting as the two main processes that led the geodynamic evolution of the Boula Ibi syn- and post-kinematic granitoids. These are consistent with low-content of Cs, Ta, Nb, Tb and Hf, supporting high melting rates ranging between 20 and 40% as well as molar Al2O3/(MgO + FeOt) vs CaO/(MgO + FeOt) plot showing magmatic evolutions from metabasaltic and metagreywackes sources.

2021 ◽  
Vol 50 (2) ◽  
pp. 315-326
Author(s):  
Oluwatoyin O. Akinola ◽  
Azman A. Ghani ◽  
Elvaene James

Idanre granite batholith in southwestern Nigeria contain three rock types, namely, Older granite undifferentiated (OGu), Older granite porphyritic (OGp) and Older granite fine-grained (OGf). The granitoids intruded into a basement rock of primarily migmatite gneiss. Petrography indicates that quartz, orthoclase, hornblende, and biotite are common to all members while microcline is more prominent in OGp and plagioclase is poorly represented in OGf. Despite minor differences in petrographic features, the granite units generally have similar geochemical relationships. The average SiO2 contents in OGp (70.49%), OGu (68.7%) and OGf (65.8%) are comparable to similar Pan-African suites located in eastern and northern Nigeria. Na2O+K2O-CaO versus SiO2 diagram shows all the granite members are calcic, K2O vs SiO2 plot classify the granites as high-K calcic alkali to shoshonitic. ANK vs ACNK plot indicatesthey are peraluminous. Plot of A/CNK vs SiO2 and K2O vs Na2O diagrams classified the rock as S-type granite. The granitoids are calc-alkaline with elevated Na2O (>2.6%) and Al/(Na2O+CaO) contents (OGu, 2.1-3.4; OGp, 2.4-3.1 and OGf, 2.2-2.9). The tectonic diagram (Rb vs (Y+Nb) indicatesthatthe batholith is Within Plate Granite (WPG.


2021 ◽  
pp. 1-27
Author(s):  
Nora G Abdel Wanees ◽  
Mohamed M El-Sayed ◽  
Khalil I Khalil ◽  
Hossam A Khamis

Abstract The Abu Kharif area in the Northern Eastern Desert consists of contrasting granitic magma suites: a Cryogenian granodiorite suite (850–635 Ma), an Ediacaran monzogranite suite (635–541 Ma) and a Cambrian alkali riebeckite granite suite (541–485 Ma). Tungsten mineralization occurs within W-bearing quartz veins and a disseminated type confined to the monzogranite. Whole-rock geochemical data classify the granodiorite as a late-orogenic I-type with calc-alkaline affinity, while the monzogranite and alkali riebeckite granite represent respectively a post-orogenic highly fractionated I-type with calc-alkaline affinity and an anorogenic A1-subtype with alkaline affinity. Geochemical modelling indicates that the three intrusions represent separate magmatic pulses where the granodiorite was generated by ∼75 % batch partial melting of an amphibolitic source followed by fractional crystallization of hornblende, biotite, apatite and titanite. The monzogranite was formed by 62 % batch partial melting of the normal ‘non-metasomatized’ Pan-African crust of calc-alkaline granite composition followed by fractional crystallization of plagioclase, biotite, K-feldspar, magnetite, ilmenite, with minor apatite and titanite. The alkali riebeckite granite was generated by 65 % batch partial melting of metasomatized Pan-African granite source followed by fractional crystallization of plagioclase, K-feldspar, amphibole and biotite with minor magnetite, apatite and titanite. In general, the parent magmas of the three intrusions were originally enriched in W, but with different concentrations. This W-enrichment would be caused by magmatic-related hydrothermal volatile-rich fluids and concentrated within the monzogranite.


1986 ◽  
Vol 23 (4) ◽  
pp. 561-578 ◽  
Author(s):  
Christian Picard ◽  
Michel Piboule

In the northeastern part of the Abitibi orogenic belt, the Archean Matagami–Chibougamou greenstone belt (2700 Ma) includes a basal volcanic sequence named the Roy Group, unconformably overlain by a volcano-sedimentary series called the Opemisca Group.The Roy Group, to the west of the town of Chapais, consists of a thick, stratified, and polycyclic volcanic series (thickness = 11 000 m) resembling the large, western Abitibi submarine stratovolcanoes constructed by three mafic to felsic magmatic cycles. The first cycle (Chrissie Formation) shows lateral spreading and is composed only of a meta-andesite and felsic pyroclastite sequence of calc-alkaline affinity. The other two cycles (Obatogamau and Waconichi formations; then Gilman, Blondeau, and Scorpio formations) are characterized by a sequence of repeated MORB type basaltic lava flows of tholeiitic affinity and by intermediate to acid lava and pyroclastic sequences calc-alkaline affinity.The stratigraphic and petrographic data suggest emplacement of mafic lavas on an abyssal plain (Obatogamau Formation) or at a later time on the flanks of a large submarine volcanic shield (Gilman and Blondeau formations). The lava and felsic pyroclastite flows were formed by very explosive eruptions from central spreading type volcanoes above a pre-existing continental crust. In particular, the Scorpio volcanic rocks were emplaced on volcanic islands later dismantled by erosion.The contents and distribution of trace elements and rare earths show that basaltic lavas resulted from an equilibrium partial melting (F = 15–35%) of spinel lherzolite type mantle sources depleted to weakly enriched in Th, Ta, Nb, and light rare-earth elements (LREE), and from fractional crystallization at low pressure of feldspar, clinopyroxene, and olivine. The lavas and the felsic pyroclastites of the Waconichi and Scorpio formations appear to result from partial melting of a mantle source of lherzolite type enriched in LREE and involving some garnet. At a late stage, the melts were probably contaminated by some continental crust materials and then differentiated by fractional crystallization of plagioclase, amphibole, biotite, and magnetite. The lavas in the Chrissie Formation and the middle member of the Gilman Formation seem to result from partial melting of a mantle source enriched in LREE with a composition between the two described above. They were subsequently modified by fractional crystallization of the plagioclase, clinopyroxene, olivine, and titanomagnetite.In general, the mafic to felsic magmatic cycles observed are characterized by a thick sequence of repeated tholeiitic basalt flows similar to those of modern mid-oceanic ridges and by a lava and felsic pyroclastite sequence of calc-alkaline affinity comparable to those occurring in orogenic belts. The transition from one lava sequence to another is marked by a significant chemical discontinuity, and the mantle sources exhibit an increasing enrichment in LREE during a given magmatic cycle. A model is proposed to satisfactorily explain all the stratigraphic, petrographic, and geochemical data implying a hot spot type mechanism, which could be responsible for the cyclic, rising diapirs inside the stratified Archean mantle and for initiating the repeated mantle source meltings, depleted and enriched in LREE, respectively. [Journal Translation]


2004 ◽  
Vol 36 (1) ◽  
pp. 482 ◽  
Author(s):  
Κ. Αρίκας ◽  
Π. Βουδούρης ◽  
M. R. Kloos ◽  
Ch. Tesch

The penological, mineralogical and geochemical study of tertiary volcanic rocks from Petrota Graben/Maronia, resulted in the distinction of the following pétrographie groups: a) a high-K calcalkaline group (andesites-dacites), b) a shoshonitic group (shoshonitic andésites, trachytic lavas, c) rhyodacitic ignimbrites and ignimbritic tuffs with high-K calc-alkaline to shoshonitic affinity, and d) rhyolites. The shoshonitic volcanic rocks and the rhyolites are probably originated from the neighbouring Maronia plutonio complex. In addition the calc-alkaline group is related to similar volcanics outcroping in the Mesti-Kassiteres area (the northeastern extension of the Graben). The petrogenesis of the volcanic rocks of the Petrota gragen is attibuted to fractional crystallization and/or magma mixing processes. Epithermal style mineralizations in Mavrokoryfi, Perama Hill and Odontoto are believed to be genetically related to the rhyolitic magmatism in the area.


Clay Minerals ◽  
1996 ◽  
Vol 31 (1) ◽  
pp. 33-44 ◽  
Author(s):  
A. Lopez-Galindo ◽  
A. Ben Aboud ◽  
P. Fenoll Hach-Ali ◽  
J. Casas Ruiz

AbstractA mineralogical and geochemical study of the Gabasa outcrop (Huesca, NE Spain) was undertaken. It consists of Early Oligocene marly and clayey fluvial and lacustrine (playa-lake) sediments. The phases detected were quartz, amorphous silica, calcite, dolomite, palygorskite, illite, interstratified illite-smectite, Al-smectite and Mg-smectite. The palygorskite expands with ethyleneglycol. Statistical analysis of the geochemical data shows that the rare earth elements and transition trace elements are basically associated with the detrital phyllosilicates, although a considerable amount of the latter is contained in the palygorskite (ΣREE = 60–70 ppm, Cr+Co+Ni+V+Zn+Cu = 120–150 ppm), in contrast to the normally low values for neoformed minerals. This fact, together with the significant presence of Al and Fe in the palygorskite, suggest genesis involving alteration by dissolution of the 2:1 structure of the illite and/or Al-smectite, followed by re-ordering in a fibrous structure.


2016 ◽  
Author(s):  
Antonio Lanzirotti ◽  
◽  
Stephen R. Sutton ◽  
Matt Newville ◽  
Jeffrey P. Fitts ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document