Petrogenesis of contrasting magmatic suites in the Abu Kharif area, Northern Eastern Desert, Egypt: implications for Pan-African crustal evolution and tungsten mineralization

2021 ◽  
pp. 1-27
Author(s):  
Nora G Abdel Wanees ◽  
Mohamed M El-Sayed ◽  
Khalil I Khalil ◽  
Hossam A Khamis

Abstract The Abu Kharif area in the Northern Eastern Desert consists of contrasting granitic magma suites: a Cryogenian granodiorite suite (850–635 Ma), an Ediacaran monzogranite suite (635–541 Ma) and a Cambrian alkali riebeckite granite suite (541–485 Ma). Tungsten mineralization occurs within W-bearing quartz veins and a disseminated type confined to the monzogranite. Whole-rock geochemical data classify the granodiorite as a late-orogenic I-type with calc-alkaline affinity, while the monzogranite and alkali riebeckite granite represent respectively a post-orogenic highly fractionated I-type with calc-alkaline affinity and an anorogenic A1-subtype with alkaline affinity. Geochemical modelling indicates that the three intrusions represent separate magmatic pulses where the granodiorite was generated by ∼75 % batch partial melting of an amphibolitic source followed by fractional crystallization of hornblende, biotite, apatite and titanite. The monzogranite was formed by 62 % batch partial melting of the normal ‘non-metasomatized’ Pan-African crust of calc-alkaline granite composition followed by fractional crystallization of plagioclase, biotite, K-feldspar, magnetite, ilmenite, with minor apatite and titanite. The alkali riebeckite granite was generated by 65 % batch partial melting of metasomatized Pan-African granite source followed by fractional crystallization of plagioclase, K-feldspar, amphibole and biotite with minor magnetite, apatite and titanite. In general, the parent magmas of the three intrusions were originally enriched in W, but with different concentrations. This W-enrichment would be caused by magmatic-related hydrothermal volatile-rich fluids and concentrated within the monzogranite.

1986 ◽  
Vol 23 (4) ◽  
pp. 561-578 ◽  
Author(s):  
Christian Picard ◽  
Michel Piboule

In the northeastern part of the Abitibi orogenic belt, the Archean Matagami–Chibougamou greenstone belt (2700 Ma) includes a basal volcanic sequence named the Roy Group, unconformably overlain by a volcano-sedimentary series called the Opemisca Group.The Roy Group, to the west of the town of Chapais, consists of a thick, stratified, and polycyclic volcanic series (thickness = 11 000 m) resembling the large, western Abitibi submarine stratovolcanoes constructed by three mafic to felsic magmatic cycles. The first cycle (Chrissie Formation) shows lateral spreading and is composed only of a meta-andesite and felsic pyroclastite sequence of calc-alkaline affinity. The other two cycles (Obatogamau and Waconichi formations; then Gilman, Blondeau, and Scorpio formations) are characterized by a sequence of repeated MORB type basaltic lava flows of tholeiitic affinity and by intermediate to acid lava and pyroclastic sequences calc-alkaline affinity.The stratigraphic and petrographic data suggest emplacement of mafic lavas on an abyssal plain (Obatogamau Formation) or at a later time on the flanks of a large submarine volcanic shield (Gilman and Blondeau formations). The lava and felsic pyroclastite flows were formed by very explosive eruptions from central spreading type volcanoes above a pre-existing continental crust. In particular, the Scorpio volcanic rocks were emplaced on volcanic islands later dismantled by erosion.The contents and distribution of trace elements and rare earths show that basaltic lavas resulted from an equilibrium partial melting (F = 15–35%) of spinel lherzolite type mantle sources depleted to weakly enriched in Th, Ta, Nb, and light rare-earth elements (LREE), and from fractional crystallization at low pressure of feldspar, clinopyroxene, and olivine. The lavas and the felsic pyroclastites of the Waconichi and Scorpio formations appear to result from partial melting of a mantle source of lherzolite type enriched in LREE and involving some garnet. At a late stage, the melts were probably contaminated by some continental crust materials and then differentiated by fractional crystallization of plagioclase, amphibole, biotite, and magnetite. The lavas in the Chrissie Formation and the middle member of the Gilman Formation seem to result from partial melting of a mantle source enriched in LREE with a composition between the two described above. They were subsequently modified by fractional crystallization of the plagioclase, clinopyroxene, olivine, and titanomagnetite.In general, the mafic to felsic magmatic cycles observed are characterized by a thick sequence of repeated tholeiitic basalt flows similar to those of modern mid-oceanic ridges and by a lava and felsic pyroclastite sequence of calc-alkaline affinity comparable to those occurring in orogenic belts. The transition from one lava sequence to another is marked by a significant chemical discontinuity, and the mantle sources exhibit an increasing enrichment in LREE during a given magmatic cycle. A model is proposed to satisfactorily explain all the stratigraphic, petrographic, and geochemical data implying a hot spot type mechanism, which could be responsible for the cyclic, rising diapirs inside the stratified Archean mantle and for initiating the repeated mantle source meltings, depleted and enriched in LREE, respectively. [Journal Translation]


2001 ◽  
Vol 73 (1) ◽  
pp. 99-119 ◽  
Author(s):  
SILVIA R. MEDEIROS ◽  
CRISTINA M. WIEDEMANN-LEONARDOS ◽  
SIMON VRIEND

At the end of the geotectonic cycle that shaped the northern segment of the Ribeira Mobile Belt (Upper Proterozoic to Paleozoic age), a late to post-collisional set of plutonic complexes, consisting of a wide range of lithotypes, intruded all metamorphic units. The Várzea Alegre Intrusive Complex is a post-collisional complex. The younger intrusion consists of an inversely zoned multistage structure envolved by a large early emplaced ring of megaporphyritic charnoenderbitic rocks. The combination of field, petrographic and geochemical data reveals the presence of at least two different series of igneous rocks. The first originated from the partial melting of the mantle. This was previously enriched in incompatible elements, low and intermediate REE and some HFS-elements. A second enrichment in LREE and incompatible elements in this series was due to the mingling with a crustal granitic magma. This mingling process changed the composition of the original tholeiitic magma towards a medium-K calc-alkalic magma to produce a suite of basic to intermediate rock types. The granitic magma from the second high-K, calc-alkalic suite originated from the partial melting of the continental crust, but with strong influence of mantle-derived melts.


2001 ◽  
Vol 34 (3) ◽  
pp. 1139
Author(s):  
O. A. KAMEL ◽  
M. M. EL MAHALLAWI ◽  
H. M. HELMY

Gold-bearing quartz veins of the Umm Rus area occur at the south-eastern contact of a Precambrian granodiorite cupola within younger gabbros of 573-615 Ma belonging to the Pan African orogenic belt. The rocks are intruded within low-grade metasediments. At such contact, a hybrid zone is developed characterized by the occurrence of quartz diorite which grades into diorite and meta-ferrogabro. A limited number of mineralized quartz veins cut the granodiorite-gabbro complex. Different alteration zones are developed in the vicinity of the quartz veins. The quartz veins have two main trends; NS and N30 E, the latter one is usaually gold-bearing. The mineralized parts of the veins commonly consist of highly sheared and banded smoky quartz, and the gold content depends on the relation with the dykes. The element is strongly correlated with As and Ag, but moderately with Cu. Near to intermediate and basic dykes, the contents of Au, Ag and As are noticably increased


2020 ◽  
Vol 113 (1) ◽  
Author(s):  
Sihua Yuan ◽  
Franz Neubauer ◽  
Yongjiang Liu ◽  
Johann Genser ◽  
Boran Liu ◽  
...  

Abstract The Grobgneis complex, located in the eastern Austroalpine unit of the Eastern Alps, exposes large volumes of pre-Alpine porphyric metagranites, sometimes associated with small gabbroic bodies. To better understand tectonic setting of the metagranites, we carried out detailed geochronological and geochemical investigations on the major part of the porphyric metagranites. LA–ICP–MS zircon U–Pb dating of three metagranites sampled from the Grobgneis complex provides the first reliable evidence for large volumes of Permian plutonism within the pre-Alpine basement of the Lower Austroalpine units. Concordant zircons from three samples yield ages at 272.2 ± 1.2 Ma, 268.6 ± 2.3 Ma and 267.6 ± 2.9 Ma interpreted to date the emplacement of the granite suite. In combination with published ages for other Permian Alpine magmatic bodies, the new U–Pb ages provide evidence of a temporally restricted period of plutonism (“Grobgneis”) in the Raabalpen basement Complex during the Middle Permian. Comparing the investigated basement with that of the West Carpathian basement, we argue that widespread Permian granite magmatism occurred in the Lower Austroalpine units. They belong to the high-K calc-alkaline to shoshonitic S-type series on the base of geochemical data. Zircon Hf isotopic compositions of the Grobgneis metagranites show εHf(t) values of − 4.37 to − 0.6, with TDM2 model ages of 1.31–1.55 Ga, indicating that their protoliths were derived by the recycling of older continental crust. We suggest that the Permian granitic and gabbroic rocks are considered as rifted-related rocks in the Lower Austroalpine units and are contemporaneous with cover sediments.


2014 ◽  
Vol 6 (2) ◽  
pp. 36 ◽  
Author(s):  
Nedal Qaoud

Geochemistry of gabbroid and granitoid plutonites from the Um Had area indicates island arc subalkaline basic magma with tholeiitic affinity and calc-alkaline, metaluminous and slightly peraluminous magma, respectively. Although different in age both plutonite types were emplaced under compressional regime, where subduction-related environment was dominant. They were formed under relatively low to moderate water-vapour pressure (1–5 k-bars) at moderate depths (20–30 km). Biotite granites were formed at a relatively high temperature range (800–840 °C), while biotite-muscovite granites were formed under relatively moderate temperature conditions (760–800 °C). These two units may represent evolution from island arc to active continental margin. It is suggested that island arc gabbros might have sourced the late subduction-related calc-alkaline granitoids during the waning stages of the pan-African orogeny. The I-type nature of the investigated plutonites in the study area and elsewhere suggests the juvenile character of the basement complex of the Eastern Desert of Egypt.


1984 ◽  
Vol 21 (4) ◽  
pp. 415-427 ◽  
Author(s):  
Kent C. Condie ◽  
Craig A. Shadel

The Green Mountain Formation of early Proterozoic age in the Sierra Madre Range of southeastern Wyoming comprises a bimodal mafic and felsic volcanic assemblage. The rocks, which are chiefly breccias, agglomerates, flows, and volcaniclastic sediments, represent both subaerial and submarine eruptions and in part were redeposited in fluvial and nearshore marine environments. Volcanic rocks are clearly calc-alkaline in character and share a large number of geochemical features in common with continental-margin arcs or evolved oceanic-arc systems.The low Mg numbers and Ni contents of the basalts require 30–40% olivine fractional crystallization, and the high contents of the most incompatible elements, high (La/Sm)N ratios, and low Zr/Nb ratios require an undepleted or enriched mantle source. Geochemical data are consistent with an origin for the felsic volcanics and associated Encampment River granodiorite by shallow fractional crystallization of calc-alkaline basalt in a tectonic setting similar to modern arc systems. The near absence of andesites may reflect the retention of andesitic magma in crustal reservoirs during fractional cyrstallization.


2004 ◽  
Vol 36 (1) ◽  
pp. 597
Author(s):  
K. Resimic-Saric ◽  
A. Koroneos ◽  
V. Cvetkovic ◽  
K. Balogh

The ophiolitic complex of Zdraljica (Central Serbia) belongs to the Eastern Branch of the Vardar suture zone. It was emp'aced during the Upper Jurassic. The complex consists predominately of a MORB/VAB-like tholeiitic suite, represented mostly by gabbros and diabases. Small occurrences of cummulitic peridotites, basalts and plagiogranites also appear. The tholeiitic suite is intruded by calc-alkaline intermediate and acid magmas. Geochemical data suggest that the ZOC tholeiitic rocks originated by partial melting of a spinel-lherzolite source. Non-modal batch melting modeling indicates 10 to 15 % of partial melting of such a source. The magmas were later modified by fractional crystallization. One-step major element modeling requires 40% (F=0.60) of fractional crystallization of a mineral assemblage: PI52 gCpxi2 5OI26 iTtn2 9Ap4.4Mgt1.0- The model is supported by the variation patterns of most trace elements.


2017 ◽  
Vol 50 (4) ◽  
pp. 2057
Author(s):  
C. Uyanık ◽  
K. Koçak

Late Miocene to Pliocene volcanism produced lava domes with mafic microgranular enclaves (MMEs), nuée ardentes and pyroclastic fall and flow (ignimbrites) deposits in the WSW and NW of Konya city. All samples are predominantly high K-calc alkaline in composition but calc-alkaline and shoshonitic composition also exist. The felsic volcanics are mainly dacite, andesite, basaltic trachyandesite and rare trachyandesite in compositon. But, the MMEs have basaltic andesite and andesite compositon. SiO2 increases with decreasing TiO2, FeOt, MgO and CaO, suggesting fractional crystallization of mafic minerals. All samples have fractionated chondritenormalised REE pattern (La/YbN: 6.7-18.1), and negative Eu anomaly (Eu/Eu*: 0.67- 0.89), indicating plagioclase fractionation. In primitive mantle-normalized spider diagram, the samples show an enrichment in large ion litophile elements (LILE) such as Cs and Ba, and depletion in high field strength elements (HFSE), e.g. Dy and Y. They show negative Nb, Ta and Ti anomalies, indicating a subduction signature for their genesis. Based on geochemical data, the volcanics are suggested to have been formed by Assimilation-Fractional Crystallization (AFC) and/or magma mixing process. Various geotectonic diagrams imply volcanic arc to post collisional setting for the samples.


Minerals ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 1173
Author(s):  
Zhengqi Xu ◽  
Minghui Yin ◽  
Youliang Chen ◽  
Lu Xiang ◽  
Hao Song ◽  
...  

Megacrystalline uraninite (up to one centimeter in size) represents one of the most important discoveries in uranium mineralogy in the western margin of the Yangtze Block and even in China in recent years. However, the genesis of megacrystalline uraninite remains controversial. In this study, the megacrystalline uraninite found in the felsic and quartz veins in the Haita area is examined for the first time. The study examined the geochemical characteristics of uraninite in the two veins and resulted in two primary findings. (1) The genesis of the uraninite was likely intrusive and was closely related to partial melting. (2) The quartz vein and feldspar vein are cogenetic and have a simple differentiation evolution relationship. Therefore, the partial melting of felsic materials during migmatization may be the most important mechanism of uranium mineralization in the study area. Furthermore, further simple fractional crystallization may be another important mechanism for the formation of megacrystalline uraninite. This study enriches the REE database of uraninite in uranium deposits worldwide, which is meaningful for studying the genesis of megacrystalline uraninite.


1987 ◽  
Vol 51 (360) ◽  
pp. 217-229 ◽  
Author(s):  
C. H. Key

AbstractThe plutonic complex in SE Jersey consists of a late Precambrian gabbro-diorite mass which has been intruded by several granites. The status of the diorites which, like the gabbros, often possess a layered structure, is not clear. New geochemical data, including rare earth and trace element analyses, suggest that acid-basic magma mixing was not responsible for the variety of intermediate rocks. Amphibole-controlled fractional crystallization of hydrous basic magma is also unlikely in view of the REE and HFS (high field strength) element distribution. The model which best fits all the available field, petrographic and geochemical evidence is one in which the chemical variation was initially produced by fractional crystallization of anhydrous basic magma and subsequently overprinted by granitic metasomatism. This superimposed calc-alkaline characteristics on the complex and produced hybrid diorites which, because they were above their solidus temperature, recrystallized with textures indicative of a magmatic origin.


Sign in / Sign up

Export Citation Format

Share Document