scholarly journals Water Use Efficiency Differences in Maize Varieties under Every Furrow and Alternate Furrow Irrigation

2020 ◽  
Vol 9 (2) ◽  
pp. 17
Author(s):  
Isaac R. Fandika ◽  
Grivin Chipula ◽  
Geoffrey Mwepa

Water-use efficiency (WUE) differences of selected maize varieties under alternate and every furrow irrigation were investigated in a split-plot design trials with three replicates. Alternate furrow (AFI) and Every furrow irrigation (EFI) were main treatments and twenty maize varieties were sub-treatments. Plots were 64 m2 with one maize seed per station spaced at 0.25m apart. Crop water use results indicated that EFI consumed more water than the AFI. The AFI reduced crop water consumption by 38 - 45% compared to EFI.  Differences were also prominent in maize varieties’ response to AFI. Late maturing maize varieties proved to have minor yield reduction with AFI compared to early and medium maturing maize varieties. WUE (kg m-3) differed with irrigation water application strategy (P<0.001). AFI had high WUE. A combination of AFI with selection of water efficient maize varieties was a good strategy for improving WUE. The AFI is a promising furrow irrigation water management strategy for water saving. According to farmers experience at five irrigation schemes and on station research, it was concluded that AFI is one of the climate smart irrigation technique that farmer can easily adopt and apply as it saves labour, time water whilst reducing conflict for water among irrigators. It was recommended that AFI be applied fully on early and medium maturing maize varieties within an irrigation interval of 7 days. For late maturing maize varieties, AFI technique should be applied from initial stage to mid - stage (up 55 days from planting) then apply EFI at tasselling and silking stages to reduce water stress at this critical stage.

2020 ◽  
Vol 4 (3) ◽  
pp. 292-299
Author(s):  
Mubarak Lawal ◽  
Muyideen Abubakar Oyebode ◽  
Jamilu Suleiman

A field experiment was conducted to evaluate the effect of irrigation regimes on yield and water use efficiency of maize crop (Zea Mays L.; SAMMAZ 29) under different irrigation scheduling. Randomized Complete Block Design (RCBD) was used and the experiment consisted of three levels of irrigation water application depth of 100%, 75% and 50% replacement of Total Available Water Capacity (TAWC) and three irrigation intervals of 7, 10 and 13 days replicated three times. Irrigation water was applied into each of 0.75 m × 90 m furrow using siphon tube of 7.5 cm diameter and 200 cm length. The results showed that the highest average irrigation water use efficiency was at I10D75% with 0.71 kg/m3 while the least was at I13D50% with 0.41 kg/m3. The highest average crop water use efficiency (CWUE) was at I10D75% with 0.79 kg/m3 while the least was at I13D75% with 0.56 kg/m3. The highest average maize yield was at I7D100% with 3580 kg/ha while the least was at I13D50% with 1200 kg/ha. The study established that irrigation after every 10 days interval with 75% replacement of TAWC using furrow irrigation of 90 m lengths produced the highest crop water use efficiency, thus saving about 48.3% of irrigation water (amounting to 329 mm) with reference to control (I7D100%) which causes a yield reduction of about 19% (amounting to 680 kg/ha). This efficient water usage saved cost and also helps to address the problem of high water table of the study area.


2020 ◽  
Vol 6 ◽  
pp. 127-135
Author(s):  
Ekubay Tesfay Gebreigziabher

Irrigation water availability is diminishing in many areas of the Ethiopian regions, which require many irrigators to consider deficit-irrigation strategy. This study investigated the response of maize (Zea mays L.) to moisture deficit under conventional, alternate and fixed furrow irrigation systems combined with three irrigation amounts over a two years period. The field experiment was conducted at Selekleka Agricultural Research Farm of Shire-Maitsebri Agricultural Research Center. A randomized complete block design (RCBD) with three replications was used. Irrigation depth was monitored using a calibrated 2-inch throat Parshall flume. The effects of the treatments were evaluated in terms of grain yield, dry above-ground biomass, plant height, cob length and water use efficiency. The two years combined result indicated that  net irrigation water applied in alternate furrow irrigation with full amount irrigation depth (100% ETc AFI) treatments was half (3773.5 m3/ha) than that of applied to the conventional furrow with full irrigation amount (CFI with 100% ETc) treatments (7546.9 m3/ha). Despite the very significant reduction in irrigation water used with alternate furrow irrigation (AFI), there was insignificant grain yield reduction in maize(8.31%) as compared to control treatment (CFI with100% ETc). In addition, we also obtained significantly (p<0.001) higher crop water use efficiency of 1.889 kg/m3 in alternate furrow irrigation (AFI), than that was obtained as 0.988 kg/m3 in conventional furrow irrigation (CFI). In view of the results, alternate furrow irrigation method (AFI) is taken as promising for conservation of water (3773.5 m3/ha), time (23:22'50" hours/ha), labor (217.36 USD/ha) and fuel (303.79 USD/ha) for users diverting water from the source to their fields using pump without significant trade-off in yield.


2020 ◽  
Vol 2020 ◽  
pp. 1-11
Author(s):  
Kassu Tadesse Kassaye ◽  
Wubengeda Admasu Yilma ◽  
Mehiret Hone Fisha ◽  
Dawit Habte Haile

The benefits of water-saving techniques such as alternate furrow and deficit irrigations need to be explored to ensure food security for the ever-increasing population within the context of declining availability of irrigation water. In this regard, field experiments were conducted for 2 consecutive dry seasons in the semiarid region of southwestern Ethiopia and investigated the influence of alternate furrow irrigation method with different irrigation levels on the yield, yield components, water use efficiency, and profitability of potato production. The experiment comprised of 3 irrigation methods: (i) conventional furrow irrigation (CFI), (ii) alternate furrow irrigation (AFI), and (iii) fixed furrow irrigation (FFI) combined factorially with 3 irrigation regimes: (i) 100%, (ii) 75%, and (iii) 50% of the potato water requirement (ETC). The experiment was laid out in randomized complete block design replicated thrice. Results revealed that seasonal irrigation water applied in alternate furrows was nearly half (170 mm) of the amount supplied in every furrow (331 mm). Despite the half reduction in the total amount of water, tuber (35.68 t ha−1) and total biomass (44.37 t ha−1) yields of potato in AFI did not significantly differ from CFI (34.84 and 45.35 t ha−1, respectively). Thus, AFI improved WUE by 49% compared to CFI. Irrigating potato using 75% of ETC produced tuber yield of 35.01 t ha−1, which was equivalent with 100% of ETC (35.18 t ha−1). Irrigating alternate furrows using 25% less ETC provided the highest net return of US$74.72 for every unit investment on labor for irrigating potato. In conclusion, irrigating alternate furrows using up to 25% less ETC saved water, provided comparable yield, and enhanced WUE and economic benefit. Therefore, farmers and experts are recommended to make change to AFI with 25% deficit irrigation in the study area and other regions with limited water for potato production to improve economic, environmental, and social performance of their irrigated systems.


2017 ◽  
Vol 48 (4) ◽  
Author(s):  
Yahya & Abdul-Razaq

This experiment was carried out at the experimental farm of Field Crop Department, College of Agriculture, university of Baghdad, during two spring seasons of 2012 and 2013 to study the response of quality characteristics of sunflower cultivar Akmar to the irrigation methods and water of magnetization technology and water use efficiency. The experiment was laid out as a split plot in randomized complete block design (RCBD) with three replications. Four irrigation methods were used as main plots, [Farrow irrigation (I1), unfixed alternate furrow irrigation (I2), fixed alternate furrow irrigation (I3) and basin irrigation (I4)], while four levels of magnetized water (0, 1000, 2000 and 3000) Gauss were used as sub plot treatments. The results revealed that unfixed alternate furrow irrigation method could reduce irrigation water by 40 %, and it was irrigation water reduced from 425 to 255 mm per season in 2012th season and reduced from 364 to 234mm per season in 2013 season were an increment of water use efficiency (WUE) by 63.5% and 61.4% were accrued during growing seasons respectively in comparison with full irrigation treatment (I1). The Leaves potassium content decreased by14.4 to 5.8% for both seasons respectively. No significant effect was detected between I1 and I2 in qualitative traits except reduction in oil percentage as it reaches 6.3 to 8.8% in both seasons respectively. Results displayed a positive effect of using magnetized irrigation water on all measured traits. WUE increased by 45.1 to 56 %, nitrogen leaf content by 19.6 and 4.8% , phosphor leaves content by 35.1 and 41.7%, potassium leaves content by 20.7 and 10.8%, chlorophyll content by 4.5 to 7.6%, seed oil content by 5.0 to 5.6%. Interaction relations between experiment treatments were significant in some of studded traits.


cftm ◽  
2019 ◽  
Vol 5 (1) ◽  
pp. 180061
Author(s):  
S.D. Leininger ◽  
L.J. Krutz ◽  
J.M. Sarver ◽  
J. Gore ◽  
A. Henn ◽  
...  

2020 ◽  
Vol 4 (2) ◽  
pp. 499-509
Author(s):  
A. Ahmed ◽  
M. A. Oyebode ◽  
H. E. Igbadun ◽  
E. Oiganji

This study was conducted in Pampaida Millennium Village (PMV), Ikara Local Government Area of Kaduna State, Nigeria; during the 2009/2010 dry season to assess Tomato farmer’s irrigation water management practice using furrow irrigation. A total of 7 tomato farmers were selected out of 45 farmers for the assessment exercise. Soil moisture content was monitored throughout the growing season using gypsum blocks. The hydraulic performance of the farmer’s plots were assessed.  Similarly, the seasonal water requirement and irrigation schedule for the irrigated tomato were also determined. The results showed that the highest Application Efficiency, Distribution Uniformity and Adequacy of irrigation were obtained in plots T6 (92%), T3 (89%) and T7 (92 %) respectively. The least AE, DU and AI were obtained in plot T1 as 74%, 72% and 63% respectively. The yield obtained ranged from 11.6t/ha to 22.3t/ha. The least yield was obtained in plot T2; while the highest yield was obtained in plot T1. All the assessed farmers maintained a 4day irrigation interval throughout the growing season. The highest crop water use efficiency (CWUE) of 62.80 kg/ha-mm was obtained in plot T1, with a corresponding crop water use (CWU) of 355 mm/season. The least CWUE was obtained in plot T2 (41.6kg/ha-mm) with a corresponding CWU of 399 mm/season. Based on the results obtained it can be deduced that plot T1 gives best results among the assessed farmers’ plots in terms of crop water use efficiency and effectiveness of irrigation, which maximizes net farm profit.


Author(s):  
G Genemo ◽  
T Seyoum

Flow rate and furrow length are the main irrigation decision variables currently affecting yield and water productivity at farm level. Improper selection of these variables produces an over use of water and loss in crop production. The general objective was to investigate the effect of decision variables on yield and water productivity of onion under conventional furrow irrigation system, with specific objective to analyze the effect of flow rate, furrow length and their interaction on yield and water productivity of onion. The field experiment was laid out in randomized complete block design with factorial arrangement of three levels of flow rate (0.7, 0.98 and 1.3 L/S) and three levels of furrow length (25, 35 and 50 m) with three replications. Inflow out flow method was used to determine the infiltration characteristics of the soil and Irrigation depth was controlled by using 3-inch Parshall flume. The maximum non-erosive flow rate to the experimental site was fixed through design equation considering soil textural class and furrow bed slope. Effect of furrow length and flow rate on yield and water productivity of the onion were used for evaluation. Their analyses indicated that effect of furrow length and their interaction with flow rate on yield were not significant (p<0.05). However, the flow rate showed highly significant (p<0.01) effect on yield of onion. The ranges of mean yield gained from furrow length and flow rate were F1 (14.75 ton ha-1) to F3 (15.96 ton ha-1) and Q1 (13.59 ton ha-1) to Q3 (19.69 ton ha-1), respectively. The effect of furrow length on crop water use efficiency and field water use efficiency was not significant (p<0.05). However, the flow rate has showed highly significant (p<0.01) effect on crop water use efficiency and field water use efficiency. The range of mean crop water use efficiency and field water use efficiency from furrow length and flow rate were F1 (33.65 kg/ha/mm) to F3 (36.41 kg/ha/mm) and Q1 (30.99 kg/ha/mm) to Q3 (38.65kg/ha/mm) and F1 (2.06 kg/m3) to F3 (2.23 kg/m3) and Q1 (1.89 kg/m3) to Q3 (2.36 kg/m3), respectively. Therefore, it can be concluded that a furrow length of 50 m is suitable to use 1.3 L/S of flow rate for better onion yield and water productivity under similar soil type of study area. Int. J. Agril. Res. Innov. Tech. 11(1): 92-100, June 2021


1992 ◽  
Vol 43 (5) ◽  
pp. 1019 ◽  
Author(s):  
AL Garside ◽  
RJ Lawn ◽  
RC Muchow ◽  
DE Byth

Plant and soil water status, crop water use and water use efficiency, as affected by irrigation treatment, were monitored over two seasons for soybean cv. Ross, sown in the late wet season in the Ord Irrigation Area in north Western Australia. Irrigation treatments were, in both seasons, furrow irrigation after cumulative open pan evaporative losses of 30, 60 120 and 240 mm, and in the second year, an additional treatment, saturated soil culture (continuous furrow irrigation, analogous to irrigation after 0 mm pan evaporation). As expected, during periods of strong evaporative demand plant water status, as indicated by leaf water potential and leaf conductance of water vapour, was consistently greater in the more frequently irrigated treatments, while soil water depletion occurred to greater extent and depth in the less frequently irrigated treatments. However, total soil water use was directly proportional to crop growth, so that there was little evidence that water use efficiency was enhanced by restricting water supply in this environment. Indeed, efficiency of water use even under the continuous furrow irrigation system was comparable with that from other irrigation treatments. The responses are interpreted to imply that there is unlikely to be any economic advantage to the use of limited supplemental irrigation in this environment.


2013 ◽  
Vol 750-752 ◽  
pp. 2348-2351
Author(s):  
Jian Gu ◽  
Guang Hua Yin ◽  
Liang Hao ◽  
Pei Fei Cong ◽  
Gui Fang Li ◽  
...  

The effect of subsoiling on corn in dryland farming was discussed. The results showed that corn yields were higher increased compared subsoiling with traditional cultivation, especially in the rainfall less year. At same time, crop water consumption was not increased with the increased in output of the corn. The output of small amount of water increases actually. Water use efficiency was affected not only by the impact of water consumption, but also by the depth and cycles of subsoiling cultivating. Under certain conditions of the impact of the water consumption, the appropriate subsoiling cultivation cycle and depth could not significantly increase production, however, significantly increase water use efficiency.


2015 ◽  
Vol 15 (3) ◽  
pp. 231
Author(s):  
Slađana Rodić Trifunović ◽  
Ružica Stričević ◽  
Nevenka Đurović

As natural water supply rarely meets crop water requirements, irrigation has a great role in yield assurance in quantity and quantity. Irrigation could be economically justified if water use efficiency (WUE) is fulfilled. Therefore, the aim of this work was to determine WUE of irrigated and rainfed crops grown in Serbia. The analysis of crop water consumption and obtained yield was based on data collected from various scientific publications. Irrigation effect differed by years, but not strictly due to rainfall amount and occurrence. The yield of some crops strongly depends on available soil moisture such as alfalfa, fodder sorghum, maize and soybean with clear relationship, whereas of some crops such relation cannot be found. It indicates that WUE also depends on some other factors, such as extreme temperatures, frost, hail, nutrient supply and plant health, as well. 


Sign in / Sign up

Export Citation Format

Share Document