scholarly journals Minimization of the Lifecycle Cost of a Rotary Heat Exchanger Used in Building Ventilation Systems in Cold Climates

2021 ◽  
Vol 67 (6) ◽  
pp. 302-310
Author(s):  
Ignas Sokolnikas ◽  
Kęstutis Čiuprinskas ◽  
Jolanta Čiuprinskienė

This article presents an analysis of rotary heat exchangers (RHE) used as heat recovery units in building ventilation systems in cold climates. Usually, heat exchangers with the highest heat transfer efficiency are the preferable option for this purpose. However, such exchangers usually have the highest media pressure drop, thus requiring the highest amount of energy for media transportation. In this study, the problem is solved by analysing the lifecycle cost (LCC) of the RHE including both the recovered heat and the electricity consumed in the fans of the air handling unit (AHU). The purpose of the investigation was to determine the optimal set of geometrical characteristics such as the exchanger’s length, foil thickness, the height and width of the air channel. Two hundred and seventy different combinations were examined using analytical dependencies and ANSYS simulations. The results are compared with experimental data obtained earlier at the KOMFOVENT laboratory. The results show that the best overall energy efficiency is obtained in heat exchangers that do not offer the best heat recovery efficiency, and LCC differences in the same climatic and economic conditions can go as high as 31 %, mainly due to the geometrical parameters of the heat exchanger.

2020 ◽  
Vol 28 (4) ◽  
pp. 15-22
Author(s):  
Oleksandra Kuzmenko ◽  
Kostiantyn Dikarev ◽  
Daniil Rodionov ◽  
Oleksandra Martysh ◽  
Anar Iskenderov ◽  
...  

AbstractTo ensure low-energy consumption in new generation energy-efficient houses, the technology of a ground heat exchanger with a heat recovery system is used almost everywhere. However, this technology has not been widely disseminated in Ukraine. The work is aimed at presenting insights from research on the combination of ground heat exchangers with a heat recovery system for building ventilation by analyzing the operational and techno-economic indicators obtained. Current studies permit revealing the optimal configuration of a ground heat exchanger with a heat recovery system for ventilation in a residential building in order to analyze the efficiency of ground heat exchangers with a heat recovery system for ventilation of a residential building in comparison with several conventional ventilation options to assess the main price/ performance ration of the process of constructing a ground heat exchanger with a heat recovery system and to determine the duration of the technological process, the labor-intensive characteristics, and the estimated cost of the technology.


Author(s):  
H. Zabiri ◽  
V. R. Radhakrishnan ◽  
M. Ramasamy ◽  
N. M. Ramli ◽  
V. Do Thanh ◽  
...  

The Crude Preheat Train (CPT) is a set of large heat exchangers which recover the waste heat from product streams back to preheat the crude oil. The overall heat transfer coefficient in these heat exchangers may be significantly reduced due to fouling. One of the major impacts of fouling in CPT operation is the reduced heat transfer efficiency. The objective of this paper is to develop a predictive model using statistical methods which can a priori predict the rate of the fouling and the decrease in heat transfer efficiency in a heat exchanger in a crude preheat train. This predictive model will then be integrated into a preventive maintenance diagnostic tool to plan the cleaning of the heat exchanger to remove the fouling and bring back the heat exchanger efficiency to their peak values. The fouling model was developed using historical plant operating data and is based on Neural Network. Results show that the predictive model is able to predict the shell and tube outlet temperatures with excellent accuracy, where the Root Mean Square Error (RMSE) obtained is less than 1%, correlation coefficient R2 of approximately 0.98 and Correct Directional Change (CDC) values of more than 90%. A preliminary case study shows promising indication that the predictive model may be integrated into a preventive maintenance scheduling for the heat exchanger cleaning.


2020 ◽  
Vol 328 ◽  
pp. 01014
Author(s):  
Kamil Križo ◽  
Andrej Kapjor ◽  
Martin Vantúch

Fresh air has to be constantly supplied to the building by air handling unit, where supplied air is mixed with inside air and optimal temperature, oxygen level is adjusted and level of dust and smoke is reduced. Supply air demand of the building is determined according to number of persons in the room, room area and regulations. Necessity of ventilation rely in supplying room with oxygen, cleaning the air, adjusting temperature and moisture and reduction of odours, gases, dust, bacteria and viruses. Achieving optimal properties of supply air creates huge portion of building energy consumption. To save energy during ventilation, standard air to air sensible heat exchangers are used. They purpose is to recover sensible heat from exhaust air and at the same time avoid contamination of supply air. Drawback of these types of exchangers is limit of recovering moisture, therefore huge portion of energy in form of latent heat is lost. On top of classical plate air to air heat exchanger, enthalpy heat exchanger allows to exchange latent as well as sensible heat [1].


2001 ◽  
Author(s):  
Cristóbal Cortés ◽  
Luis I. Díez ◽  
Antonio Campo

Abstract Practical calculation of the heat-recovery sections of large-size boilers is still based on approximate methods. On the one hand, CFD-based models cannot directly handle the geometric intricacy of tube bundles, and thus rely on volume-averaged source terms that demand empirical input. On the other hand, the standard, lumped heat exchanger calculation, which can be a far simpler and more robust alternative, fails in several important aspects, mainly related to the effects of thermal radiation and the coupling between several sections. In this paper, we consider the diverse sections of a coal-fired utility boiler as a case study to show how to deal with these shortcomings. Under the objective of developing a simple monitoring method, we extend the traditional heat exchanger model to take into account most of the peculiarities of boiler superheaters, reheaters and economizers. Techniques range from the re-examination of analytical solutions to the auxiliary use of CFD calculations. The models are assembled to simulate the thermal performance of the boiler as a whole unit. Results are validated against actual measurements taken at a thermoelectric plant.


Author(s):  
C. F. McDonald

Increased emphasis is being placed on the regenerative gas turbine cycle, and the utilization of waste heat recovery systems, for improved thermal efficiency. For such systems there are modes of engine operation, where it is possible for a metal fire to occur in the exhaust heat exchanger. This paper is intended as an introduction to the subject, more from an engineering, than metallurgical standpoint, and includes a description of a series of simple tests to acquire an understanding of the problem for a particular application. Some engine operational procedures, and design features, aimed at minimizing the costly and dangerous occurrence of gas turbine heat exchanger fires, are briefly mentioned.


Author(s):  
Furkan Kelasovali ◽  
Ali Celen ◽  
Nurullah Kayaci ◽  
Ahmet Selim Dalkilic ◽  
Somchai Wongwises

In today’s world, the efficient use of energy is very important due to short of energy sources. In order to use energy efficiently, some methods/devices have been developed recently. One of them is heat recovery systems which are used for energy saving in the Heating Ventilating and Air Conditioning applications. Air handling units (AHUs) equipped with heat recovery system can be used applications for energy saving. Not only this paper presents information about rotary heat exchangers which is one of the air to air heat recovery systems but also it investigates their effects to system when they are used in an application. In the study, a shopping centre, which is located in the capital city of Turkey, is taken consideration. The shopping centre has an air handling unit having 54567 m3/h fresh air flow rate, 640 kW heating and 41 kW cooling capacity. Calculations are performed for AHU of the shopping centre both equipped with rotary heat exchanger and without rotary heat exchanger. In order to compare performance of AHUs, annual energy saving, initial investment cost, annual operating expenses, payback time and profit parameters are calculated for each month. According to the results, heating battery power in the heating season and cooling battery power in the cooling season is significantly decreased by using heat recovery system and total annual energy saving is calculated as $83,444. Consequently, it is found that the use of rotary heat exchanger improves performance of system in terms of the reduction in required powers and costs.


2019 ◽  
Vol 41 (1) ◽  
pp. 46-59 ◽  
Author(s):  
Akram Abdul Hamid ◽  
Dennis Johansson ◽  
Michael Lempart

Cleaning coils can be an efficient way to reduce the need for reparations and maintain the functionality of a ventilation system. This study builds upon existing knowledge concerning the contamination of heat exchangers. Through field measurements on coils and heat-recovery units, a laboratory experiment on a coil, and a generic calculation example, this study determines the impact of sustained contamination on heat-recovery units with regards to energy use. Field measurements made before and after cleaning of heat exchangers show an average increase in the pressure drop by 12% and decrease in the thermal exchange efficiency by 8.1% due to mass deposited on the surface of the heat exchangers. Results from a laboratory test show a correlation between the mass deposited on a coil and (1) the increase in pressure drop over the coil, as well as (2) a diminishing heat exchange. Accumulating contamination on heat-recovery units in residential and commercial buildings (over time) is then linked to increasing pressure drop and diminishing thermal efficiency. With models based on these links, energy loss over time is calculated based on a generic calculation example in a realistic scenario. Practical application: The results from this study emphasize the need for maintenance of buildings with ventilation systems with coils, but more so those with heat-recovery units. The presented field measurements and laboratory study correlate energy loss with sustained accumulation of contaminants on coils and heat-recovery units. These results should serve as a recommendation to property owners considering maintenance of such units in their buildings.


Author(s):  
P J Dechamps

This paper describes a method used to compute the transient performances of assisted circulation heat recovery steam generators. These heat recovery steam generators are composed of several heat exchangers, each of which is a bundle of tubes. The method presented here treats each heat exchanger in a similar way, replacing the bundle of tubes with an ‘equivalent’ linear heat exchanger. This equivalent linear heat exchanger is then discretized in as many slices as required by the accuracy. The mass and enthalpy equations on each of these control volumes are solved by a fully explicit numerical method, adapted for the special conditions encountered in this kind of problem, allowing a considerable reduction of the computation time compared to other methods. Some emphasis is put on the modifications required to solve the equations for the evaporators because they are two-phase heat exchangers. A model for the steam drums is also presented together with simple models for the main control loops used in such systems. An example is presented in which an existing dual pressure level heat recovery steam generator is started from a cold state. The numerical predictions are in good agreement with measurements.


Energies ◽  
2020 ◽  
Vol 13 (11) ◽  
pp. 2804
Author(s):  
Sławomir Rabczak ◽  
Paweł Kut

Ground heat exchangers supplement ventilation systems and provide notable power gains by heating ventilated air during winter and cooling it in summer. Additionally, they prevent recuperator exchangers from freezing. In atmospheric air, there are many types of contaminants and microorganisms that significantly affect the quality of ventilated air. The air that flows through the system of pipes of the heat exchanger may also become contaminated. In order to remove contamination from ventilated air, ultraviolet radiation may be used. This article presents a concept of using a UV-C (ultraviolet with a wavelength of 200–280 nm) lamp in the air duct in front of the air handling unit connected to the ground heat exchanger. The UV-C lamp, apart from clearing the air, may also decrease operational costs thanks to eliminating contamination that forms bacterial jelly on heat exchanger elements.


2019 ◽  
Vol 16 (11) ◽  
pp. 4513-4518 ◽  
Author(s):  
Valeriya Leonidovna Vorontsova ◽  
Alfiya Gizzetdinovna Bagoutdinova ◽  
Almaz Fernandovich Galemzianov

The designs of the modern type of twisting devices include spring-twisted channels, which to use as innovative heat exchange elements of tubular apparatuses. The paper presents a method for determining the equivalent diameter of the tube and intertubular space in a heat exchanger apparatus of the type “tube-in-tube” with a spring-twisted channel which composed of tori closely adjacent to each other. Based on the integral calculus, formulas are obtained for calculating the equivalent diameters of the tube and annular space in a tube-in-tube apparatus with a spring-twisted channel. The results of experiments on heat transfer are generalized by criterial equations, in which the equivalent diameter is used as the characteristic size. It is shown that the equivalent diameters of the examined channels differ from each other by no more than 5%. The results of this work can be used in the design and calculations of promising heat exchangers with intensified heat transfer.


Sign in / Sign up

Export Citation Format

Share Document