Modelling the Transient Behaviour of Heat Recovery Steam Generators

Author(s):  
P J Dechamps

This paper describes a method used to compute the transient performances of assisted circulation heat recovery steam generators. These heat recovery steam generators are composed of several heat exchangers, each of which is a bundle of tubes. The method presented here treats each heat exchanger in a similar way, replacing the bundle of tubes with an ‘equivalent’ linear heat exchanger. This equivalent linear heat exchanger is then discretized in as many slices as required by the accuracy. The mass and enthalpy equations on each of these control volumes are solved by a fully explicit numerical method, adapted for the special conditions encountered in this kind of problem, allowing a considerable reduction of the computation time compared to other methods. Some emphasis is put on the modifications required to solve the equations for the evaporators because they are two-phase heat exchangers. A model for the steam drums is also presented together with simple models for the main control loops used in such systems. An example is presented in which an existing dual pressure level heat recovery steam generator is started from a cold state. The numerical predictions are in good agreement with measurements.

Author(s):  
Milnes P. David ◽  
Amy Marconnet ◽  
Kenneth E. Goodson

Two-phase microfluidic cooling has the potential to achieve low thermal resistances with relatively small pumping power requirements compared to single-phase heat exchanger technology. Two-phase cooling systems face practical challenges however, due to the instabilities, large pressure drop, and dry-out potential associated with the vapor phase. Our past work demonstrated that a novel vapor-venting membrane attached to a silicon microchannel heat exchanger can reduce the pressure drop for two-phase convection. This work develops two different types of vapor-venting copper heat exchangers with integrated hydrophobic PTFE membranes and attached thermocouples to quantify the thermal resistance and pressure-drop improvement over a non-venting control. The first type of heat exchanger, consisting of a PTFE phase separation membrane and a 170 micron thick carbon-fiber support membrane, shows no improvement in the thermal resistance and pressure drop. The results suggest that condensation and leakage into the carbon-fiber membrane suppresses venting and results in poor device performance. The second type of heat exchanger, which evacuates any liquid water on the vapor side of the PTFE membrane using 200 ml/min of air, reduces the thermal resistance by almost 35% in the single-phase regime in comparison. This work shows that water management, mechanical and surface properties of the membrane as well as its attachment and support within the heat exchanger are all key elements of the design of vapor-venting heat exchangers.


2001 ◽  
Author(s):  
Cristóbal Cortés ◽  
Luis I. Díez ◽  
Antonio Campo

Abstract Practical calculation of the heat-recovery sections of large-size boilers is still based on approximate methods. On the one hand, CFD-based models cannot directly handle the geometric intricacy of tube bundles, and thus rely on volume-averaged source terms that demand empirical input. On the other hand, the standard, lumped heat exchanger calculation, which can be a far simpler and more robust alternative, fails in several important aspects, mainly related to the effects of thermal radiation and the coupling between several sections. In this paper, we consider the diverse sections of a coal-fired utility boiler as a case study to show how to deal with these shortcomings. Under the objective of developing a simple monitoring method, we extend the traditional heat exchanger model to take into account most of the peculiarities of boiler superheaters, reheaters and economizers. Techniques range from the re-examination of analytical solutions to the auxiliary use of CFD calculations. The models are assembled to simulate the thermal performance of the boiler as a whole unit. Results are validated against actual measurements taken at a thermoelectric plant.


Author(s):  
C. F. McDonald

Increased emphasis is being placed on the regenerative gas turbine cycle, and the utilization of waste heat recovery systems, for improved thermal efficiency. For such systems there are modes of engine operation, where it is possible for a metal fire to occur in the exhaust heat exchanger. This paper is intended as an introduction to the subject, more from an engineering, than metallurgical standpoint, and includes a description of a series of simple tests to acquire an understanding of the problem for a particular application. Some engine operational procedures, and design features, aimed at minimizing the costly and dangerous occurrence of gas turbine heat exchanger fires, are briefly mentioned.


Author(s):  
Karthik Silaipillayarputhur ◽  
Stephen A. Idem

The transient performance of a multi-pass cross flow heat exchanger subjected to temperature and mass flow rate perturbations, where the heat exchanger flow circuiting is neither parallel flow nor counter flow, is considered in this work. A detailed numerical study was performed for representative single-pass, two-pass, and three-pass heat exchangers. Numerical predictions were obtained for cases where the minimum capacity rate fluid was subjected to a step change in inlet temperature in absence of mass flow rate perturbations. Likewise, numerical predictions were obtained for the heat exchangers operating initially at steady state, where a step mass flow rate change of the minimum capacity rate fluid was imposed in the absence of any fluid temperature perturbations. The transient performance of this particular heat exchanger configuration subjected to these temperature and flow disturbances has not been discussed previously in the available literature. In the present study the energy balance equations for the hot and cold fluids and the heat exchanger wall were solved using an implicit central finite difference method. A parametric study was conducted by varying the dimensionless quantities that govern the transient response of the heat exchanger over a typical range of values. Because of the storage of energy in the heat exchanger wall, and finite propagation times associated with the inlet perturbations, the outlet temperatures of both fluids do not respond instantaneously. The results are compared with previously published transient performance predictions of multi-pass counter flow and parallel flow heat exchangers.


Author(s):  
Michel J. Pettigrew ◽  
Colette E. Taylor

Design guidelines were developed to prevent tube failures due to excessive flow-induced vibration in shell-and-tube heat exchangers. An overview of vibration analysis procedures and recommended design guidelines is presented in this paper. This paper pertains to liquid, gas and two-phase heat exchangers such as nuclear steam generators, reboilers, coolers, service water heat exchangers, condensers, and moisture-separator-reheaters. Generally, a heat exchanger vibration analysis consists of the following steps: 1) flow distribution calculations, 2) dynamic parameter evaluation (i.e. damping, effective tube mass, and dynamic stiffness), 3) formulation of vibration excitation mechanisms, 4) vibration response prediction, and 5) resulting damage assessment (i.e., comparison against allowables). The requirements applicable to each step are outlined in this paper. Part 1 of this paper covers flow calculations, dynumic parameters and fluidelastic instability.


2014 ◽  
Vol 133 ◽  
pp. 183-196 ◽  
Author(s):  
Emanuel Feru ◽  
Bram de Jager ◽  
Frank Willems ◽  
Maarten Steinbuch

Author(s):  
Michel J. Pettigrew ◽  
Colette E. Taylor

Design guidelines were developed to prevent tube failures due to excessive flow-induced vibration in shell-and-tube heat exchangers. An overview of vibration analysis procedures and recommended design guidelines is presented in this paper. This paper pertains to liquid, gas and two-phase heat exchangers such as nuclear steam generators, reboilers, coolers, service water heat exchangers, condensers, and moisture-separator-reheaters. Part 2 of this paper covers forced vibration excitation mechanisms, vibration response prediction, resulting damage assessment, and acceptance criteria.


2019 ◽  
Vol 116 ◽  
pp. 00032
Author(s):  
Paulina Kanaś ◽  
Andrzej Jedlikowski ◽  
Sergey Anisimov ◽  
Borys Vager

The paper presents an analysis of heat and mass transfer processes occurring inside the rotary heat exchanger operating under high-speed rotor conditions for different values of the airflow rate. For this purpose the original mathematical α-model was used. Conducted computer simulations allowed to determine the influence of Number of Transfer Units (NTU) of airflow on the temperature effectiveness as well as on the distribution of different active heat and mass transfer zones: “dry”, “wet” and “frost”. It was found that the increase of the values of NTU strictly affects the increase of the effectiveness of heat recovery. Another issue emerging from this study is the fact that in the certain range of low values of NTU there is no “dry” area created. It was established that at low values of NTU (NTU≈1) “frost” area extremum and sharp drop in the “frost” area accumulation are observed.


1987 ◽  
Vol 109 (2) ◽  
pp. 287-294 ◽  
Author(s):  
S. M. Zubair ◽  
P. V. Kadaba ◽  
R. B. Evans

This paper presents a closed-form analytical method for the second-law-based thermoeconomic optimization of two-phase heat exchangers used as condensers or evaporators. The concept of “internal economy” as a means of estimating the economic value of entropy generated (due to finite temperature difference heat transfer and pressure drops) has been proposed, thus permitting the engineer to trade the cost of entropy generation in the heat exchanger against its capital expenditure. Results are presented in terms of the optimum heat exchanger area as a function of the exit/inlet temperature ratio of the coolant, unit cost of energy dissipated, and the optimum overall heat transfer coefficient. The total heat transfer resistance represented by (1/U = C1 + C2 Re−n) in the present analysis is patterned after Wilson (1915) which accommodates the complexities associated with the determination of the two-phase heat transfer coefficient and the buildup of surface scaling resistances. The analysis of a water-cooled condenser and an air-cooled evaporator is presented with supporting numerical examples which are based on the thermoeconomic optimization procedure of this paper.


Sign in / Sign up

Export Citation Format

Share Document