scholarly journals Canadian Forestry Accreditation Board Annual Report – 2015 / Bureau Canadien d'agrément en foresterie Rapport Annuel – 2015: SFI Partnering for Conservation and Community Impact: New Pathway to Environmentally Responsible Forest Management in LEED: Legal Forestry alone is not worthy of LEED Credit: All Tree Species Vulnerable to Drought?: Carbon in Pacific Northwest Forests Reflects Harvest History: Value of Urban (London, UK) Trees Shown: Old-growth Forests as Buffer against Rising Temperatures

2016 ◽  
Vol 92 (02) ◽  
pp. 150-162
2006 ◽  
Vol 82 (3) ◽  
pp. 364-367 ◽  
Author(s):  
Thomas A Spies ◽  
Jon R Martin

The era of ecosystem management for federal forest lands in the Pacific Northwest began in 1994 with the adoption of the Northwest Forest Plan. This plan was designed to maintain and restore species and ecosystems associated with late successional and old-growth forests on over 10 million ha of federal lands in Washington, Oregon and California. The plan called for implementation monitoring, effectiveness monitoring, and validation monitoring for a variety of ecological and socio-economic components. Monitoring has become a central part of management of the federal forests in the region and managers and scientists have gained considerable experience in implementing this large and complex program. The components of the monitoring plan include late-successional/old growth vegetation, northern spotted owls, marbled murrelets, aquatic habitat and social conditions. The monitoring plan is strongly based on vegetation layer created with TM satellite imagery and on a regional grid of forest inventory plots. The lessons learned from the implementation of this monitoring plan include: 1) agencies need to devote considerable resources to insure that effective monitoring will occur at broad scales; 2) aggregation of local monitoring efforts is not a substitute for a designed regional monitoring plan; 3) vegetation structure and composition, measured with satellite imagery and inventory plots, is a cost-effective, broad-scale indicator of biological diversity; 4) some species, such as threatened and endangered species, are not necessarily covered with habitat approaches and may require population monitoring; 5) our scientific understanding of monitoring components will vary widely as will the approaches to data collection and analysis; 6) monitoring requires research support to develop and test metrics and biodiversity models; 7) links of monitoring to decision-making (adaptive management) are still being forged. Key words: aquatic ecosystems, endangered species, old-growth forests, Pacific Northwest, USA, regional ecosystem management


2004 ◽  
Vol 80 (4) ◽  
pp. 458-462 ◽  
Author(s):  
Yves Bergeron

Over the past decade, there has been an increasing interest in the development of forest management approaches that are based on an understanding of historical natural disturbance dynamics. The rationale for such an approach is that management to favour landscape compositions and stand structures similar to those of natural ecosystems should also maintain biological diversity and essential ecological functions. In fire-dominated landscapes, this approach is possible only if current and future fire frequencies are sufficiently low, in comparison to pre-industrial fire frequency, that we can substitute fire with forest management. I address this question by comparing current and future fire frequency to historical reconstruction of fire frequency from studies in the Canadian boreal forest. Current and simulated future fire frequencies using 2× and 3×CO2 scenarios are lower than the historical fire frequency for most sites, suggesting that forest management could potentially be used to recreate the forest age structure of fire-controlled pre-industrial landscapes. Current even-aged management, however, tends to reduce forest variability: for example, fully regulated, even-aged management will tend to truncate the natural forest stand age distribution and eliminate overmature and old-growth forests from the landscape. The development of silvicultural techniques that maintain a spectrum of forest compositions and structures at different scales in the landscape is one avenue to maintain this variability. Key words: boreal forest, even aged management, fire regime, old-growth forests, climate change, partial cutting


CATENA ◽  
2020 ◽  
Vol 187 ◽  
pp. 104406 ◽  
Author(s):  
Yahya Kooch ◽  
Negar Moghimian ◽  
Giorgio Alberti

1998 ◽  
Vol 88 (6) ◽  
pp. 633-640 ◽  
Author(s):  
T.D. Schowalter ◽  
L.M. Ganio

AbstractVariation in canopy arthropod abundances and community structure were evaluated in an old-growth (500-year-old) forest at the Wind River Canopy Crane Research Facility in southwestern Washington, USA. Arthropods were sampled at three canopy levels and two seasons in each of four tree species (Pseudotsuga menziesii, Tsuga heterophylla, Abies grandis, and Thuja plicata). The four tree species had distinguishable arthropod species compositions and community organization. Thuja plicata (Cupressaceae) had a particularly distinctive canopy fauna dominated by several mite taxa which did not occur on the other tree species (all Pinaceae). Pseudotsuga menziesii hosted a relatively diverse arthropod fauna with greatest richness of taxa and functional groups. Distinct arthropod assemblages were not observed among canopy levels and sampling dates, but these factors significantly influenced abundances of 63% of the arthropod taxa, either individually or interactively with other factors. These data indicate that forests managed for fewer tree species eliminate important components of arthropod diversity in Pacific Northwest forests and that sampling for biodiversity assessment also should represent season and canopy level.


2011 ◽  
Vol 41 (1) ◽  
pp. 195-210 ◽  
Author(s):  
Alison Cross ◽  
Steven S. Perakis

Old-growth forests of the Pacific Northwest provide a unique opportunity to examine tree species – soil relationships in ecosystems that have developed without significant human disturbance. We characterized foliage, forest floor, and mineral soil nutrients associated with four canopy tree species (Douglas-fir (Pseudotsuga menziesii (Mirbel) Franco), western hemlock (Tsuga heterophylla (Raf.) Sarg.), western redcedar (Thuja plicata Donn ex D. Don), and bigleaf maple (Acer macrophyllum Pursh)) in eight old-growth forests of the Oregon Coast Range. The greatest forest floor accumulations of C, N, P, Ca, Mg, and K occurred under Douglas-fir, primarily due to greater forest floor mass. In mineral soil, western hemlock exhibited significantly lower Ca concentration and sum of cations (Ca + Mg + K) than bigleaf maple, with intermediate values for Douglas-fir and western redcedar. Bigleaf maple explained most species-based differences in foliar nutrients, displaying high concentrations of N, P, Ca, Mg, and K. Foliar P and N:P variations largely reflected soil P variation across sites. The four tree species that we examined exhibited a number of individualistic effects on soil nutrient levels that contribute to biogeochemical heterogeneity in these ecosystems. Where fire suppression and long-term succession favor dominance by highly shade-tolerant western hemlock, our results suggest a potential for declines in both soil Ca availability and soil biogeochemical heterogeneity in old-growth forests.


2020 ◽  
Vol 46 (2) ◽  
pp. 148-161
Author(s):  
Joshua Petter ◽  
Paul Ries ◽  
Ashley D’Antonio ◽  
Ryan Contreras

Trees provide an array of social, economic, and ecological benefits; furthermore, trees on public land are critical for providing those benefits to people who cannot afford their own trees. It is important to know how managers make trade-offs and prioritize different tree selection criteria in order to target educational campaigns at the state or regional level. Primary contacts for Tree City USA designated cities were surveyed across the Pacific Northwest. Of these municipalities, 79 out of 151 responded (52.3% response rate), with 6 municipalities providing responses from different departments for a total of 85 responses. Currently, there are primarily descriptive statistics in relation to tree species selection. This study provides a framework for future statistical analysis and greater exploration of how municipalities and managers are selecting tree species. Results were analyzed with a Mann-Whitney U test to compare International Society of Arboriculture (ISA) Certified Arborists® to those who are not certified across various tree species selection criteria. Another Mann-Whitney U test was used to compare small (≤ 50,000) and large (> 50,000) municipalities across the same criteria. ISA Certified Arborists® showed statistically significant differences from those who are not certified in a number of tree species selection criteria. ISA Certified Arborists® also differed in urban forest management on a city-wide scale, particularly in favoring greater tree species diversity. The differences in urban forest management between ISA Certified Arborists® and noncertified—and between municipality sizes—can help to influence future educational campaigns targeted toward increasing urban forest health and resiliency.


Forests ◽  
2020 ◽  
Vol 11 (4) ◽  
pp. 401
Author(s):  
Daniel P. Soto ◽  
Pablo J. Donoso ◽  
Angélica Vásquez-Grandón ◽  
Mauricio González-Chang ◽  
Christian Salas-Eljatib

Raulí (Nothofagus alpina (Poepp. & Endl.)) and Ulmo (Eucryphia cordifolia Cav.) are mid-tolerant tree species in the Coihue-Raulí-Tepa (ca. 0.55 mill ha) and Evergreen (ca. 4.1 mill ha) forest types in south-central Chile, respectively. These species have been selectively logged in old-growth forests especially during the 20th century, Raulí mostly for its highly valuable timber, and Ulmo for its highly demanded firewood and bark for the tannery industry. Natural regeneration of these species occurs mostly through canopy gaps, but it can be retarded, or even inhibited, when the cover of the understory vegetation becomes unusually dense, such as in high-graded forests. Although underplanting is possible for these species, the knowledge about their growth in forest understories is scarce, and necessary to inform restoration programs. Therefore, we evaluated short-term responses (two years) of underplanted containerized seedlings in root-collar diameter, height, stem volume, and in the slenderness index, as a function of canopy openness (%, continuous variable) and three restoration treatments (categorical variables, plus one control treatment) at two different sites with high-graded old-growth forests for each forest type. By using generalized linear mixed-effects models (GLMMs) we determined that Raulí was more sensitive to the influence of both canopy openness and restoration treatments, while Ulmo was mostly influenced by canopy openness. Specifically, Raulí was positively influenced by canopy openness and restoration treatments in all response variables except for the slenderness index. Conversely, Ulmo was influenced by canopy openness in all response variables except the slenderness index, which was influenced by both predictor variables (canopy openness and restoration treatments). Thus, prospects for restoration with these species are discussed, including possible ontogenetic changes in their responses to light that may demand continuous silvicultural operations to recover the productive and functional roles of these species in these forest ecosystems.


2008 ◽  
Vol 23 (2) ◽  
pp. 106-112 ◽  
Author(s):  
John P. Caouette ◽  
Eugene J. DeGayner

Abstract The forest classification and mapping system currently used in managing the Tongass National Forest (NF) is based largely on an economic forest measure, net board foot volume per acre. Although useful for timber economic modeling, this forest measure poorly differentiates old-growth forest types in a way that is meaningful to ecological and social concerns. In 2005, we published an article presenting a proposed tree size and tree density mapping model for the Tongass NF. We claimed the model would provide better information on the structural patterns in old-growth forests than did the current mapping models based on net board foot volume per acre. We also stated that further testing of our proposed model is required before it can be fully integrated into forest management plans and landscape analysis. In this article, we used independent field data to evaluate our proposed tree size and density model and better define its accuracy. Results showed differences among mapping classes similar to differences observed in the development stages of the model. Results also showed mapping accuracy estimates between 60 and 80%. We used the model in a forest management application by comparing the representation of old-growth forest types within a landscape to the representation within a management-defined subset of that landscape.


Sign in / Sign up

Export Citation Format

Share Document