scholarly journals Syntheses, Solid-state Structures and Catalytic Activity of Zinc Carboxylate Complexes in Lactide Polymerization

2014 ◽  
Vol 69 (11-12) ◽  
pp. 1365-1374 ◽  
Author(s):  
Christoph Scheiper ◽  
Christoph Wölper ◽  
Dieter Bläser ◽  
Joachim Roll ◽  
Stephan Schulz

Abstract Three dinuclear zinc carboxylate complexes [L1-3Zn(μ,η2-O2CPh)]2 (1, 2, 4) containing either the bidentate N,N′-chelating β-diketiminate ligand RNC(Me)C(H)C(Me)NR (R = 2,6-iPr2-C6H3, L1, complex 1), the tridentate O,N,N-chelating ligand OC(Me)C(H)C(Me)NCH2CH2NMe2 (L2, complex 2) or the bis-N,N′-chelating bis-β-diketiminate ligand RNC(Me)C(H)C(Me)NNC(Me)- C(H)C(Me)NR (R = 2,6-iPr2-C6H3, L3, complex 4) were synthesized and characterized including single-crystal X-ray diffraction. Reaction of the neutral bis-β-diketimine (L3(H)2) with two equivalents of ZnMe2 leads to the expected heteroleptic dinuclear zinc complex L3(ZnMe)2 3 in 93% yield. Further reaction with benzoic acid PhCO2H leads to complex 4. Complex 2 forms a rather strong carboxylate-bridged dimer, whereas the carboxylate groups in complexes 1 and 4 act as asymmetrical bridges between both Zn atoms, pointing to the formation of a weakly bonded dimer. The zinc atoms in 1 and 4 are tetrahedrally coordinated, whereas in 2 the coordination number is increased to five due to the coordination of the pendant donor arm. The ring opening polymerization (ROP) of rac-lactide was investigated with the zinc complexes 1-4 and diazabicycloundec-7-ene (DBU) as a co-catalyst. Complexes 2 and 3 are active polymerization catalysts, which in the presence of DBU converted 200 equiv. of rac-lactide into polylactide within 10 min at ambient temperature. The analysis of the crude polymer showed that the lactide polymerization with catalyst 2 occurs via a slightly modified activated-monomer mechanism.

Author(s):  
Fatemeh Dordahan ◽  
Frank Schaper

4-(tert-Butyl)-2-trityl-6-(di-(2-picolyl)amine)phenol, LH, was prepared from paraformaldehyde, 4-(tert-butyl)-2-tritylphenol and di-(2-picolyl)amine. Reaction with Zn(N(SiMe3)2)2 gave LZnN(SiMe3)2. The complex was shown by X-ray diffraction study, variable temperature NMR and DFT calculations to coordinate only one pyridine ligand, which allows for fast and facile complex isomerisation. LZnN(SiMe3)2 was active in rac-lactide polymerization, but in contrast to previous complexes of this type did not show any evidence for isotactic monomer enchainment via a catalytic-site mediated chain-end control mechanism. Addition of alcohol led to increased activity, but the complex was unstable in the presence of free alcohol.


Polymers ◽  
2020 ◽  
Vol 12 (9) ◽  
pp. 2148
Author(s):  
Sonia Sobrino ◽  
Marta Navarro ◽  
Juan Fernández-Baeza ◽  
Luis F. Sánchez-Barba ◽  
Agustín Lara-Sánchez ◽  
...  

New mono- and dinuclear chiral alkoxide/thioalkoxide NNO-scorpinate zinc complexes were easily synthesized in very high yields, and characterized by spectroscopic methods. X-ray diffraction analysis unambiguously confirmed the different nuclearity of the new complexes as well as the variety of coordination modes of the scorpionate ligands. Scorpionate zinc complexes 2, 4 and 6 were assessed as catalysts for polycarbonate production from epoxide and carbon dioxide with no need for a co-catalyst or activator under mild conditions. Interestingly, at 70 °C, 10 bar of CO2 pressure and 1 mol % of loading, the dinuclear thioaryloxide [Zn(bpzaepe)2{Zn(SAr)2}] (4) behaves as an efficient and selective one-component initiator for the synthesis of poly(cyclohexene carbonate) via ring-opening copolymerization of cyclohexene oxide (CHO) and CO2, affording polycarbonate materials with narrow dispersity values.


2020 ◽  
Vol 235 (10) ◽  
pp. 465-475
Author(s):  
Ozge Gungor ◽  
Seda Nur Kertmen Kurtar ◽  
Muhammet Kose

AbstractSeven biguanide derivatives were prepared by the nucleophilic reaction between dicyandiamide and p-substitute aniline derivatives or memantine or adamantine under acidic conditions. The cyclization of the biguanide compounds were also conducted via acetone to give 1,3,5-triazine derivatives. The structures of the synthesized compounds were characterized by analytical methods. The solid state structures of [HL5]Cl, [H2L7]Cl2, [HL1a]Cl and [HL5a]Cl were investigated by X-ray diffraction study. The acetylcholinesterase and α-glucosidase inhibitor properties of the compounds were then evaluated by the spectroscopic method. The compounds were found to show considerable acetylcholinesterase and α-glucosidase inhibitory activities compared to the approved drugs. The cyclization of biguanide derivatives with acetone did not affect inhibition of acetylcholinesterase, yet increased the α-glucosidase inhibition.


2017 ◽  
Vol 72 (7) ◽  
pp. 461-474 ◽  
Author(s):  
Saddam Weheabby ◽  
Mohammad A. Abdulmalic ◽  
Evgeny A. Kataev ◽  
Tatiana A. Shumilova ◽  
Tobias Rüffer

AbstractPoly(cyclic) oxamates represent novel and potentially multidentate ligands for coordination chemistry. To obtain them, the treatment of 2-nitroaniline with two equivalents of oxalyl chloride afforded N,N′-bis(2-nitrophenyl)oxalamide (1), and by reduction of 1 with [NH4][CO2H] and Pd/C, N,N′-bis(2-aminophenyl)oxalamide (2, bapoxH6) was synthesized. After the addition of an equimolar amount of oxalyl chloride to a THF solution of 2 and aqueous work-up the 24-membered macrocycle H8L2 was obtained. In analogues experiments, the addition of ethoxalyl and oxalyl chloride to 2 afforded the 36-membered macrocycle H12L3. The addition of Cu(OAc)2·H2O and NaOH to 2 gave rise to the formation of [Cu2(bapoxH4)(OAc)2] (4). The identities of 1, 2 and H8L2 were determined by elemental analysis, IR, NMR spectroscopic studies and by mass spectrometry. The solid state structures of H8L2, H12L3 and 4 have been determined by single-crystal X-ray diffraction studies. Macrocycle H12L3 forms chains through intermolecular hydrogen bonds, while packing of 4 consists of layers held by intermolecular dispersion and hydrogen bond interactions. 24-mer H8L2 forms a cavity with a diameter of about 7.5 Å corresponding to an accessible volume of about 120 Å3 according to the well-established 55% solution and was found to bind bromide and iodide anions selectively.


1995 ◽  
Vol 73 (11) ◽  
pp. 2069-2078 ◽  
Author(s):  
Timothy J. Peckham ◽  
Daniel A. Foucher ◽  
Alan J. Lough ◽  
Ian Manners

The silicon-bridged [1]ferrocenophane Fe(η-C5H3SiMe3)2(SiMe2) (5) was synthesized via the reaction of Li2[Fe(η-C5H3SiMe3)2]•tmeda (tmeda = tetramethylethylenediamine) with Me2SiCl2 in hexanes. The disilane-bridged [2]ferrocenophane Fe(η-C5H3SiMe3)2(Si2Me4) (7) was prepared using a similar route from the disilane ClMe2SiSiMe2Cl. Despite the presence of sterically demanding SiMe3 substituents on the cyclopentadienyl rings, compound 5 was found to undergo thermal ring-opening polymerization at 170 °C to produce very soluble, high molecular weight poly(ferrocenylsilane) 6 with Mw = 1.4 × 105, Mn = 8.4 × 104. However, the [2]ferrocenophane 7 was found to be resistant to thermal ring-opening polymerization even at 350 °C and decomposed above 380 °C. A single-crystal X-ray diffraction study of 7 revealed that the steric interactions between the bulky SiMe3 groups are relieved by a significant twisting of the disilane bridge with respect to the plane defined by the centroids of the cyclopentadienyl ligands and the metal atom. The angle between the planes of the cyclopentadienyl rings in 7 was found to be 5.4(6)°, slightly greater than that in the non-silylated analogue Fe(η-C5H4)2(Si2Me4) (4a) (4.19(2)°), and dramatically less than the corresponding tilt angle of the strained, polymerizable, silicon-bridged [1]ferrocenophane Fe(η-C5H4)2(SiMe2) (1) (20.8(5)°). The length of the Si—Si bond in 7 (2.342(3) Å) was found to be close to the sum of the covalent radii (2.34 Å). Crystals of 7 are monoclinic, space group C2/c, with a = 23.689(3) Å, b = 11.174(1) Å, c = 31.027(3) Å, β = 109.16(1)°, V = 7758(2) Å3, and Z = 12. Keywords: ring-opening polymerization, ferrocenophane, organometallic polymers.


2021 ◽  
Vol 19 (5) ◽  
pp. 132-138
Author(s):  
Maan Abd-Alameer Salih ◽  
Q.S. Kareem ◽  
Mohammed Hadi Shinen

In this exploration Poly lactic corrosive (PLA) was orchestrated the ring-opening polymerization Poly lactic corrosive (PLA) blended with poly(3-hexylthiophene) (P3HT) which prepared by solution. Blends thin films Synthesis by spin coating technique and using Tetrahydrofuran (THF) as solvent. PLA powder was 'characterized by' 'X-ray' 'diffraction', '(FT-IR)'. pure Optical properties (PLA), (PLA)/P3HT blends thin films with different percentage of P3HT (0, 1, 2, and 3) wt% were investigated using UV-VS spectroscopy The results showed that the absorption, absorption coefficient, extinction coefficient and conductivity increase with increasing the rate of deformation P3HT, The energy gap decreases with increasing deformation.


2019 ◽  
Vol 97 (3) ◽  
pp. 178-190 ◽  
Author(s):  
Valérie Hardouin Duparc ◽  
Clémentine Dimeck ◽  
Frank Schaper

Copper(II) complexes carrying pyridylmethyleneaminobenzoate or –propanoate ligands, LCuX, were prepared in one-pot reactions from pyridinecarboxaldehyde, aminobenzoic acid or β-alanine, and CuX2 (X = Cl, NO3, OAc, or OTf). All complexes were characterized by single-crystal X-ray diffraction studies and formed either dimers, tetramers, or coordination polymers. Attempted preparation of the respective alkoxide complexes, LCu(OR), was unsuccessful, but use of LCuX/NaOMe mixtures in rac-lactide polymerization indicated under some conditions coordination–insertion polymerization via a copper alkoxide as the mechanism. The complexes performed poorly in rac-lactide polymerization, showing low activities (12 h to completion at 140 °C), low to moderate heterotacticity (Pr = 0.6–0.8), and poor polymer molecular weight control (intramolecular transesterification). They were competent catalysts for Chan–Evans–Lam couplings with phenylboronic acid, without any indication of side reactions such as deboration or aryl homocoupling. The complexes were active in undried methanol, without addition of base, ligand, or molecular sieves. Aniline, n-octylamine, and cyclohexylamine were coupled quantitatively under identical reaction conditions. There is only little influence of the anion on activities (less than a factor of 2) but a strong influence on induction periods. The complexes were not active in CEL coupling with alcohols, phenols, or alkylboronic acids.


2003 ◽  
Vol 58 (2-3) ◽  
pp. 231-236 ◽  
Author(s):  
Gerhard Bringmann ◽  
Robert-Michael Pfeifer ◽  
Christian Rummey ◽  
Thomas Pabst ◽  
Dirk Leusser ◽  
...  

The atroposelective ring opening of lactone-bridged biaryl systems is the key step in the total synthesis of a series of axially chiral biaryl natural products and useful reagents or catalysts for asymmetric synthesis. For a more in-depth understanding of the mechanism and stereochemical course of this remarkable cleavage reaction, a seven-membered ether analog of such useful biaryl lactones has been investigated structurally, both experimentally, by X-ray diffraction analysis, and by ab initio calculations (B3LYP/6-31G*). In a nearly perfect agreement, both methods show that these seven-membered bridged biaryls do not constitute helicene-like distorted molecules, but ‘true’ biaryls, whose sufficiently long lactone or ether bridge allows the two aromatic systems to adopt a large dihedral angle to each other, without any noticeable deviation from planarity for the two aromatic systems - in contrast to related six-membered analogs, which can rather be considered as helicene-like twisted polycyclic systems.


2018 ◽  
Vol 74 (11) ◽  
pp. 1434-1439
Author(s):  
Hong-Tao Zhang ◽  
Xiao-Long Wang

In recent years, much initial interest and enthusiasm has focused on the self-assembly of coordination polymers due to the aesthetics of their crystalline architectures and their potential applications as new functional materials. As part of an exploration of chiral coordination polymers, a new twofold interpenetrated two-dimensional (2D) coordination polymer, namely, poly[[tetraaquabis[μ3-(2R,2′R)-2,2′-(benzene-1,4-dicarboxamido)dipropionato-κ5 O,O′:O′′,O′′′:O′′]dicadmium(II)] trihydrate], {[Cd2(C14H14N2O6)2(H2O)4]·3H2O} n , has been synthesized by the reaction of Cd(CH3COO)2·2H2O with the designed ligand (2R,2′R)-2,2′-(benzene-1,4-dicarboxamido)dipropionic acid (H2 L). The compound has been structurally characterized by elemental analysis, IR spectroscopy, powder X-ray diffraction and single-crystal X-ray diffraction analysis. In the crystal structure, each CdII cation binds to three carboxylate groups from two crystallographically independent L 2− dianions. Four carboxylate groups link two crystallographically independent cadmium cations into a 4,4-connected secondary building unit (SBU). The resulting SBUs are extended into a two-dimensional folding sheet via the terephthalamide moiety of the ligand as a spacer, which can be simplified as a (4,4)-connected 4,4L15 net with the point symbol (3.53.62)(32.52.62). In the lattice, two independent folding sheets interpenetrate each other to yield a double-sheet layer. The resulting 2D layers pack in parallel arrays through intermolecular hydrogen bonds and interlayer π–π interactions. The thermal stability and photoluminescence properties of the title compound have been investigated and it exhibits an enhanced fluorescence emission and a longer lifetime compared with free H2 L.


2019 ◽  
Vol 75 (9) ◽  
pp. 1220-1227 ◽  
Author(s):  
Mei-rong Han ◽  
Shao-dong Li ◽  
Ling Ma ◽  
Bang Yao ◽  
Si-Si Feng ◽  
...  

A new mononuclear europium complex incorporating the (+)-di-p-toluoyl-D-tartaric acid (D-H2DTTA) ligand, namely, catena-poly[tris{μ2-3-carboxy-2,3-bis[(4-methylphenyl)carbonyloxy]propanoato}tris(methanol)europium(III)], [Eu(C20H17O8)3(CH3OH)3] n , (I), has been synthesized and characterized by IR spectroscopy, elemental analysis, powder X-ray diffraction and single-crystal X-ray diffraction analysis. The structure analysis indicates that complex (I) crystallizes in the trigonal space group R3 and exhibits an infinite one-dimensional chain structure, in which the Eu3+ ion is surrounded by six O atoms from six D-HDTTA− ligands and three O atoms from three coordinated methanol molecules, thus forming a tricapped trigonal prism geometry. The D-H2DTTA ligand is partially deprotonated and adopts a μ1,6-coordination mode via two carboxylate groups to link adjacent Eu3+ ions, affording an infinite one-dimensional propeller-shaped coordination polymer chain along the c axis, with an Eu...Eu distance of 7.622 (1) Å. Moreover, C—H...π interactions lead to the formation of helical chains running along the c axis and the whole structure displays a snowflake pattern in the ab plane. The circular dichroism spectrum confirms the chirality of complex (I). The solid-state photoluminescence properties were also investigated at room temperature and (I) exhibits characteristic red emission bands derived from the Eu3+ ion (CIE 0.63, 0.32), with a reasonably long lifetime of 0.394 ms, indicating effective energy transfer from the ligand to the metal centre. In addition, a magnetic investigation reveals single-ion magnetic behaviour. The spin-orbit coupling parameter (λ) between the ground and excited states is fitted to be 360 (2) cm−1 through Zeeman perturbation. Therefore, complex (I) may be regarded as a chiral optical-magneto bifunctional material.


Sign in / Sign up

Export Citation Format

Share Document