scholarly journals Optimization of Ultrasound-Assisted Extraction of Phenolic Antioxidants from Lotus corniculatus

2019 ◽  
Vol 92 (3) ◽  
pp. 369-377
Author(s):  
Barbara Fumić ◽  
Mario Jug ◽  
Marijana Zovko Končić

Ultrasound-assisted extraction of phenolic antioxidants from Lotus corniculatus was optimized using response surface methodology. The extraction was performed according to the Box–Behnken design with ethanol concentration, temperature, and pH, as independent variables. The responses were extraction yield, DPPH radical scavenging activity (RSA) IC50 and content of different phenolic compounds (total phenols, flavonoids and phenolic acids, as well as quercetin, kaempferol and genistein derivatives). The models were used to calculate best conditions for maximal extraction of phenolic compounds and antiradical activity. Use of the optimized extraction parameters increased the content of quercetin and kaempferol derivatives more than tenfold (from 6.07 to 65.10 mg mL–1 and 6.69 to 92.75 mg mL–1, respectively). The results of this work stress the importance of careful selection of conditions for flavonoids extraction. Abundance of bioactive phenolics in L. corniculatus extracts obtained under optimized extraction conditions opens the possibility for wider utilization of this plant.

2016 ◽  
Vol 5 (2) ◽  
Author(s):  
Liliana S. Celaya ◽  
Carmen I. Viturro ◽  
Luís R. Silva ◽  
Silvia Moreno

The aim of this study was to optimize the extraction of antioxidant compounds from Schinus areira leaves using  ultrasound assisted extraction and response surface methodology. The effect of sonication time and plant material:solvent ratio were used to optimize the recovery. Results showed that a high recovery of antioxidant compounds from leaves of three different S. areira specimens was achieved under optimized conditions. The leaf extracts obtained displayed a DPPH (1,1-Diphenyl-2-picrylhydrazyl) radical scavenging activity analogous to the well-known antioxidant trolox  (EC50 = 23-46 vs 36.1 µg/mL, respectively). In addition, these extracts showed a good potency to eliminate superoxide and nitric oxide-radicals as well as a moderate antimicrobial activity against gram positive Staphylococcus aureus and Enterococcus faecalis and yeast. HPLC chromatography analysis of the three S. areira leaf extracts showed different high contents of kaempferol-3-O-rutinoside, quercetin-3-O-galactoside and 3-O-caffeoylquinic acid. The results showed that the S. areira leaf extracts contained a high amount of antioxidant phenolic compounds, which might be a valuable source to be used as additives in plant-based foods.


Plants ◽  
2019 ◽  
Vol 8 (3) ◽  
pp. 50 ◽  
Author(s):  
Duangjai Tungmunnithum ◽  
Laurine Garros ◽  
Samantha Drouet ◽  
Sullivan Renouard ◽  
Eric Lainé ◽  
...  

Painted nettle (Plectranthus scutellarioides (L.) R.Br.) is an ornamental plant belonging to Lamiaceae family, native of Asia. Its leaves constitute one of the richest sources of trans-rosmarinic acid, a well-known antioxidant and antimicrobial phenolic compound. These biological activities attract interest from the cosmetic industry and the demand for the development of green sustainable extraction processes. Here, we report on the optimization and validation of an ultrasound-assisted extraction (USAE) method using ethanol as solvent. Following preliminary single factor experiments, the identified limiting extraction parameters (i.e., ultrasound frequency, extraction duration, and ethanol concentration) were further optimized using a full factorial design approach. The method was then validated following the recommendations of the association of analytical communities (AOAC) to ensure the precision and accuracy of the method used to quantify trans-rosmarinic acid. Highest trans-rosmarinic acid content was obtained using pure ethanol as extraction solvent following a 45-minute extraction in an ultrasound bath operating at an ultrasound frequency of 30 kHz. The antioxidant (in vitro radical scavenging activity) and antimicrobial (directed toward Staphylococcus aureus ACTT6538) activities were significantly correlated with the trans-rosmarinic acid concentration of the extract evidencing that these key biological activities were retained following the extraction using this validated method. Under these conditions, 110.8 mg/g DW of trans-rosmarinic acid were extracted from lyophilized P. scutellarioides leaves as starting material evidencing the great potential of this renewable material for cosmetic applications. Comparison to other classical extraction methods evidenced a clear benefit of the present USAE method both in terms of yield and extraction duration.


2019 ◽  
Vol 25 (4) ◽  
pp. 361-368
Author(s):  
Anbarasi Karunanithi ◽  
Sivakumar Venkatachalam

In the present work, ultrasound-assisted extraction (UAE) was employed to extract the phenolic compounds from wood apple pulp. A Box-Behnken design was used to optimize the process variables. The results revealed that UAE have significantly higher TPC (17.41?0.13 mg GAE/g dW) and TFC (6.73?0.19 mg RE/g dW) in comparison with solvent extraction that gave noticeably lower TPC (12.01?0.17 mg GAE/g dW) and TFC = 4.47?0.09 mg RE/g dW). Optimally obtained extracts of wood apple pulp were subjected to phytochemical screening and it was found that bicyclo[2.2.1]heptane, 2-(1-buten-3-yl)-serverogenin acetate, 4H-pyran-4-one, 2,3-dihydro-3,5-dihydroxy-6-methyl-, L-(+)- -ascorbic acid 2,6-dihexadecanoate, cis-vaccenic acid, thiopene, 2-propyl- -phenol, 2,4-bis(1,1-dimethylethyl) and octanoic acid were present only in UAE extracts. Since the bioactive component presence is remarkably higher in UAE compared to other techniques, UAE seems to be a better method for the extraction of phenolic compounds from wood apple pulp.


2019 ◽  
Vol 891 ◽  
pp. 83-89
Author(s):  
Attapon Nitiwattananon ◽  
Saipin Thanachasai

In this study, ultrasound-assisted extraction (UAE) was compared with conventional extraction methods, including conventional solvent extraction without agitation (CSE), conventional solvent extraction with agitation at 50 rpm (CSE50) and 150 rpm (CSE150), for the extraction of phenolic compounds from coconut (Cocos nucifera L.) husk. The extraction yield, total phenolic content (TPC) and total flavonoid content (TFC) were examined. The antioxidant capacity of C. nucifera extracts was determined by using 2,2’-azino-bis (3-ethylbenzothiazoline-6-sulphonic acid) (ABTS) and 2,2’-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging assays. Experimental results showed that UAE gave the highest extraction yield, TPC, TFC and antioxidant capacities (ABTS and DPPH), followed by CSE150, CSE50 and CSE, respectively. UAE was found to be more effective than conventional extraction methods. Conventional solvent extraction with higher agitation speed exhibited higher extraction efficiency than those with lower agitation speed and without agitation.


Molecules ◽  
2019 ◽  
Vol 24 (19) ◽  
pp. 3613 ◽  
Author(s):  
Marina Dulić ◽  
Petar Ciganović ◽  
Lovorka Vujić ◽  
Marijana Zovko Končić

Berberis vulgaris is rich in berberine, an isoquinoline alkaloid, with antidiabetic activity, often used topically for skin-related problems. The aim of this work was to develop a “green” method for berberine extraction using mixtures of water with glycerol, a non-toxic, environmentally-friendly solvent. Response surface methodology based on Box–Behnken design was used to optimize the experimental conditions for ultrasound-assisted extraction of berberine and anti-radical components from B. vulgaris root bark. The independent variables were temperature (X1), glycerol concentration (X2), and ultrasound power (X3), while the responses were berberine concentration and DPPH radical scavenging activity of the extracts (RSA IC50). The response values of the extracts prepared at optimum conditions were (response, X1, X2, X3): berberine yield (145.5 μg/mL; 80 °C, 50%, 144 W) and RSA IC50 (58.88 μL/mL; 80 °C, 30%, 720 W). The observed values deviated from the predicted values by −3.45% and 6.42% for berberine and RSA IC50, respectively, thus indicating the validity of the selected models. The prepared extracts demonstrated antioxidant, anti-melanogenic, and anti-inflammatory activity, as well excellent α-glucosidase and α-amylase inhibitory activity. The displayed biological properties and lack of glycerol toxicity makes the prepared extracts suitable for direct inclusion into antidiabetic and dermatologic food supplements and topical products.


2021 ◽  
Vol 11 (14) ◽  
pp. 6416
Author(s):  
Miguel Giordano ◽  
José Pinela ◽  
Maria Inês Dias ◽  
Ricardo C. Calhelha ◽  
Dejan Stojković ◽  
...  

The nutritional quality of kiwifruit has been highlighted by several studies, while its peel is typically discarded as a by-product with no commercial value. This study was carried out to optimize the ultrasound-assisted extraction (UAE) of phenolic compounds from kiwi peel. Three independent variables (time (t), ultrasonic power (P) and ethanol concentration (EtOH)) were combined in a five-level central composite rotatable design coupled with the response surface methodology (RSM). The extraction yield determined gravimetrically and the content of phenolic compounds identified by HPLC-DAD-ESI/MSn (namely two quercetin glycosides, one catechin isomer and one B-type (epi)catechin dimer) were the experimental responses used in the optimization. The polynomial models were successfully fitted to the experimental data and used to determine the optimal UAE conditions. The sonication of the sample at 94.4 W for 14.8 min, using 68.4% ethanol, resulted in a maximum of 1.51 ± 0.04 mg of flavonoids per g of extract, a result that allowed the experimental validation of the predictive model. The kiwi peel extract obtained under optimized conditions showed somehow promising bioactive properties, including antioxidant and antimicrobial effects, and no toxicity to Vero cells. Overall, this study contributes to the valorization of kiwi peel as a low-cost raw material for the development of natural ingredients (such as food preservatives) and also to the resource-use efficiency and circular bioeconomy.


Molecules ◽  
2021 ◽  
Vol 26 (6) ◽  
pp. 1729
Author(s):  
Zhiqin Xu ◽  
Yini Cai ◽  
Qing Ma ◽  
Zhimin Zhao ◽  
Depo Yang ◽  
...  

Deep eutectic solvents (DESs) are considered as efficient and green solvents for the extraction of bioactive compounds from medicinal plants. In this work, a novel method of DES-based ultrasound-assisted extraction of bioactive compounds from Baphicacanthus cusia leaves (BCL) was established. Systematic screening and the morphology of the original and treated BCL were observed with scanning electron microscopy to determine the extraction efficiency of different solvents. The extraction conditions were optimized by Box–Behnken design (BBD) tests and the optimal extraction conditions were as follows: lactic acid/L-menthol ratio of 5: 2 (mol/mol), solid–liquid ratio of 80.0 mL/g and temperature of 60.5 °C. The extraction yields of tryptanthrin, indigo and indirubin reached 0.356, 1.744 and 0.562 mg/g, respectively. The results of a 2,2-diphenyl-1-picrylhydrazy (DPPH) radical scavenging activity test indicated the feasibility of DESs in the extraction of bioactive compounds. This study indicated that L-menthol/lactic acid was a green and efficient solvent for the extraction of bioactive compounds from BCL, and DES-based ultrasound-assisted extraction could be used as an effective application strategy for the extraction of bioactive compounds from medicinal plants.


Sign in / Sign up

Export Citation Format

Share Document