scholarly journals Antidiabetic and Cosmeceutical Potential of Common Barbery (Berberis vulgaris L.) Root Bark Extracts Obtained by Optimization of ‘Green’ Ultrasound-Assisted Extraction

Molecules ◽  
2019 ◽  
Vol 24 (19) ◽  
pp. 3613 ◽  
Author(s):  
Marina Dulić ◽  
Petar Ciganović ◽  
Lovorka Vujić ◽  
Marijana Zovko Končić

Berberis vulgaris is rich in berberine, an isoquinoline alkaloid, with antidiabetic activity, often used topically for skin-related problems. The aim of this work was to develop a “green” method for berberine extraction using mixtures of water with glycerol, a non-toxic, environmentally-friendly solvent. Response surface methodology based on Box–Behnken design was used to optimize the experimental conditions for ultrasound-assisted extraction of berberine and anti-radical components from B. vulgaris root bark. The independent variables were temperature (X1), glycerol concentration (X2), and ultrasound power (X3), while the responses were berberine concentration and DPPH radical scavenging activity of the extracts (RSA IC50). The response values of the extracts prepared at optimum conditions were (response, X1, X2, X3): berberine yield (145.5 μg/mL; 80 °C, 50%, 144 W) and RSA IC50 (58.88 μL/mL; 80 °C, 30%, 720 W). The observed values deviated from the predicted values by −3.45% and 6.42% for berberine and RSA IC50, respectively, thus indicating the validity of the selected models. The prepared extracts demonstrated antioxidant, anti-melanogenic, and anti-inflammatory activity, as well excellent α-glucosidase and α-amylase inhibitory activity. The displayed biological properties and lack of glycerol toxicity makes the prepared extracts suitable for direct inclusion into antidiabetic and dermatologic food supplements and topical products.

2016 ◽  
Vol 5 (2) ◽  
Author(s):  
Liliana S. Celaya ◽  
Carmen I. Viturro ◽  
Luís R. Silva ◽  
Silvia Moreno

The aim of this study was to optimize the extraction of antioxidant compounds from Schinus areira leaves using  ultrasound assisted extraction and response surface methodology. The effect of sonication time and plant material:solvent ratio were used to optimize the recovery. Results showed that a high recovery of antioxidant compounds from leaves of three different S. areira specimens was achieved under optimized conditions. The leaf extracts obtained displayed a DPPH (1,1-Diphenyl-2-picrylhydrazyl) radical scavenging activity analogous to the well-known antioxidant trolox  (EC50 = 23-46 vs 36.1 µg/mL, respectively). In addition, these extracts showed a good potency to eliminate superoxide and nitric oxide-radicals as well as a moderate antimicrobial activity against gram positive Staphylococcus aureus and Enterococcus faecalis and yeast. HPLC chromatography analysis of the three S. areira leaf extracts showed different high contents of kaempferol-3-O-rutinoside, quercetin-3-O-galactoside and 3-O-caffeoylquinic acid. The results showed that the S. areira leaf extracts contained a high amount of antioxidant phenolic compounds, which might be a valuable source to be used as additives in plant-based foods.


2019 ◽  
Vol 92 (3) ◽  
pp. 369-377
Author(s):  
Barbara Fumić ◽  
Mario Jug ◽  
Marijana Zovko Končić

Ultrasound-assisted extraction of phenolic antioxidants from Lotus corniculatus was optimized using response surface methodology. The extraction was performed according to the Box–Behnken design with ethanol concentration, temperature, and pH, as independent variables. The responses were extraction yield, DPPH radical scavenging activity (RSA) IC50 and content of different phenolic compounds (total phenols, flavonoids and phenolic acids, as well as quercetin, kaempferol and genistein derivatives). The models were used to calculate best conditions for maximal extraction of phenolic compounds and antiradical activity. Use of the optimized extraction parameters increased the content of quercetin and kaempferol derivatives more than tenfold (from 6.07 to 65.10 mg mL–1 and 6.69 to 92.75 mg mL–1, respectively). The results of this work stress the importance of careful selection of conditions for flavonoids extraction. Abundance of bioactive phenolics in L. corniculatus extracts obtained under optimized extraction conditions opens the possibility for wider utilization of this plant.


Plants ◽  
2019 ◽  
Vol 8 (3) ◽  
pp. 50 ◽  
Author(s):  
Duangjai Tungmunnithum ◽  
Laurine Garros ◽  
Samantha Drouet ◽  
Sullivan Renouard ◽  
Eric Lainé ◽  
...  

Painted nettle (Plectranthus scutellarioides (L.) R.Br.) is an ornamental plant belonging to Lamiaceae family, native of Asia. Its leaves constitute one of the richest sources of trans-rosmarinic acid, a well-known antioxidant and antimicrobial phenolic compound. These biological activities attract interest from the cosmetic industry and the demand for the development of green sustainable extraction processes. Here, we report on the optimization and validation of an ultrasound-assisted extraction (USAE) method using ethanol as solvent. Following preliminary single factor experiments, the identified limiting extraction parameters (i.e., ultrasound frequency, extraction duration, and ethanol concentration) were further optimized using a full factorial design approach. The method was then validated following the recommendations of the association of analytical communities (AOAC) to ensure the precision and accuracy of the method used to quantify trans-rosmarinic acid. Highest trans-rosmarinic acid content was obtained using pure ethanol as extraction solvent following a 45-minute extraction in an ultrasound bath operating at an ultrasound frequency of 30 kHz. The antioxidant (in vitro radical scavenging activity) and antimicrobial (directed toward Staphylococcus aureus ACTT6538) activities were significantly correlated with the trans-rosmarinic acid concentration of the extract evidencing that these key biological activities were retained following the extraction using this validated method. Under these conditions, 110.8 mg/g DW of trans-rosmarinic acid were extracted from lyophilized P. scutellarioides leaves as starting material evidencing the great potential of this renewable material for cosmetic applications. Comparison to other classical extraction methods evidenced a clear benefit of the present USAE method both in terms of yield and extraction duration.


Molecules ◽  
2021 ◽  
Vol 26 (6) ◽  
pp. 1729
Author(s):  
Zhiqin Xu ◽  
Yini Cai ◽  
Qing Ma ◽  
Zhimin Zhao ◽  
Depo Yang ◽  
...  

Deep eutectic solvents (DESs) are considered as efficient and green solvents for the extraction of bioactive compounds from medicinal plants. In this work, a novel method of DES-based ultrasound-assisted extraction of bioactive compounds from Baphicacanthus cusia leaves (BCL) was established. Systematic screening and the morphology of the original and treated BCL were observed with scanning electron microscopy to determine the extraction efficiency of different solvents. The extraction conditions were optimized by Box–Behnken design (BBD) tests and the optimal extraction conditions were as follows: lactic acid/L-menthol ratio of 5: 2 (mol/mol), solid–liquid ratio of 80.0 mL/g and temperature of 60.5 °C. The extraction yields of tryptanthrin, indigo and indirubin reached 0.356, 1.744 and 0.562 mg/g, respectively. The results of a 2,2-diphenyl-1-picrylhydrazy (DPPH) radical scavenging activity test indicated the feasibility of DESs in the extraction of bioactive compounds. This study indicated that L-menthol/lactic acid was a green and efficient solvent for the extraction of bioactive compounds from BCL, and DES-based ultrasound-assisted extraction could be used as an effective application strategy for the extraction of bioactive compounds from medicinal plants.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Passakorn Kingwascharapong ◽  
Manat Chaijan ◽  
Supatra Karnjanapratum

AbstractImpact of ultrasound-assisted process (UAP) on yield, functional properties, antioxidant properties and molecular characteristics of protein extracted from Bombay locusts (BL) (Patanga succinta L.) was studied. Different conditions of UAP were implemented for different amplitudes (40–60%) and times (10–30 min) during aqueous extraction. Notably, UAP could enhance yield and protein recovery, compared with those from typical process (TP) (continuously stirred at 100 rpm at room temperature for 1 h). UAP conditions used governed the change of surface hydrophobicity and free α-amino content of BL. UAP could improve solubility of BL, especially at pH levels higher than 2. UAP had no significant (p > 0.05) detrimental effects on foaming capacity and stability of BL. Nevertheless, UAP, particularly at 50–60% amplitudes, affected the emulsion activity and stability of BL. UAP provided BL with high radical scavenging activities and good electron donating ability, especially that from 60% amplitude for 20 min (UAP-60/20). UAP-60/20 showed the impact on change of isoelectric point and molecular characteristic monitored by Fourier transform infrared (FTIR) of BL, compared to those from TP. In addition, BL was also an excellent source of both essential and nonessential amino acids. Therefore, UAP potentially enhanced BL extraction efficiency, resulting the BL with good functional and antioxidative properties.


2016 ◽  
Vol 12 (5) ◽  
pp. 439-449 ◽  
Author(s):  
Fan Hou ◽  
Yanwen Wu ◽  
Lina Kan ◽  
Qian Li ◽  
Shuangshuang Xie ◽  
...  

Abstract A comparison of chestnut polysaccharide extraction using ultrasound-assisted extraction (UAE) and hot water extraction (HWE) demonstrated that UAE is superior to HWE due to its higher extraction efficiency. Scanning electron microscopy (SEM), thermogravimetric analysis-differential scanning calorimetry (TGA-DSC) and Fourier-transform infrared spectroscopy (FTIR) were used to characterize the ultrasound-assisted-extracted polysaccharide (UAEP) and hot water-extracted polysaccharide (HWEP). SEM images revealed that the UAEP and chestnut residue were crushed, with particle sizes that were smaller than those of the HWEP, which was related to the breakage of long-chain polysaccharides. TGA-DSC showed a higher transition temperature and enthalpy value for the UAEP than the HWEP, and the FTIR spectrum revealed typical characteristics of polysaccharides, with some differences between the UAEP and HWEP. The evaluation of antioxidant activities showed that the UAEP had stronger antioxidant capacities than the HWEP, regardless of the reducing power and DPPH-, ABTS- and hydroxyl radical-scavenging activities, suggesting that ultrasound is an optimal method to rapidly extract chestnut polysaccharide, a potential natural antioxidant.


Marine Drugs ◽  
2018 ◽  
Vol 16 (8) ◽  
pp. 257 ◽  
Author(s):  
Marco Garcia-Vaquero ◽  
Gaurav Rajauria ◽  
Brijesh Tiwari ◽  
Torres Sweeney ◽  
John O’Doherty

The objectives of this study were to employ response surface methodology (RSM) to investigate and optimize the effect of ultrasound-assisted extraction (UAE) variables, temperature, time and amplitude on the yields of polysaccharides (fucose and total glucans) and antioxidant activities (ferric reducing antioxidant power (FRAP) and 1,1-diphenyl-2-picryl-hydrazyl radical scavenging activity (DPPH)) from Laminaria digitata, and to explore the suitability of applying the optimum UAE conditions for L. digitata to other brown macroalgae (L. hyperborea and Ascophyllum nodosum). The RSM with three-factor, four-level Box-Behnken Design (BBD) was used to study and optimize the extraction variables. A second order polynomial model fitted well to the experimental data with R2 values of 0.79, 0.66, 0.64, 0.73 for fucose, total glucans, FRAP and DPPH, respectively. The UAE parameters studied had a significant influence on the levels of fucose, FRAP and DPPH. The optimised UAE conditions (temperature = 76 °C, time = 10 min and amplitude = 100%) achieved yields of fucose (1060.7 ± 70.6 mg/100 g dried seaweed (ds)), total glucans (968.6 ± 13.3 mg/100 g ds), FRAP (8.7 ± 0.5 µM trolox/mg freeze-dried extract (fde)) and DPPH (11.0 ± 0.2%) in L. digitata. Polysaccharide rich extracts were also attained from L. hyperborea and A. nodosum with variable results when utilizing the optimum UAE conditions for L. digitata.


Sign in / Sign up

Export Citation Format

Share Document