scholarly journals Diagnostic methodology of power transformer’s failure

Author(s):  
Chinbat O

Mining and energy sectors are considered to be the fundamental keystones of the Mongolian economy.Regarding the Erdenet enterprise LLC, which is acknowledged as the leading enterprise of mining sector, the ensuring continuous and uniform production serves as the basis for improving effeiciency and production quality end products. Smooth, uninterrupted reliable and stable operation of production is directly dependent on power supply system,its sub-system composition and power transformer application. Therefore, this study was conducted at the power transformers located in Erdenet Enterprise LLC and Ulaanbaatar Electricity Distribution Network with the aim to indentify damages and failure in transformers and develop diagnosing methodogy.

2020 ◽  
Vol 2 (58) ◽  
pp. 28-32
Author(s):  
A. Gapon ◽  
O. Grib ◽  
S. Kozlov ◽  
O. Yevseienko ◽  
O. Levon

The work is devoted to solving an urgent problem - the development of a computer model of the energy consumption system of the Institute of the ionosphere of the National Academy of Sciences and the Ministry of Education and Science of Ukraine in order to solve the problem of increasing the energy efficiency of the measuring complex. The power supply system of the complex is described, a generalized structural diagram of the loads - powerful consumers of electricity is presented. The graphs characterizing the energy consumption of individual powerful loads are presented, the problem of compensating the reactive power of loads is shown. The adequacy of the developed model is confirmed by the coincidence of the shape and values of the experimentally obtained characteristics on loads with the characteristics of the model. The model adequacy was assessed by the variance of feedback deviations from the system mean. The results obtained confirmed the possibility of using the developed Matlab-model of the energy consumption system of the measuring complex for creating and testing on the model of an energy-efficient power supply system, which will ensure the stable operation of scientific equipment for the implementation of research programs of the NAS of Ukraine.


Author(s):  
V. S. Klimash ◽  
B. D. Tabarov

Three-phase thyristor switches are designed for pulsed formation of inrush currents of electrical equipment with their subsequent shunting in steady state operation. In transformer substations, they perform a bumpless turning on of a power transformer by connecting its primary winding first to two phases of the network at the moment of zero crossing by the phase voltage of the network third phase, and then to the network third phase at the moment of zero crossing by the line voltage of the other two network phases. In this case, the starting currents of the transformer almost immediately enter the steady state without the appearance of constant components in the magnetization currents and voltage drop. To expand the functionality of thyristor switches, it is proposed, in addition to bumpless turning on of a power transformer, to disconnect it without arcing between the contacts of electrical equipment, as well as to carry out continuous voltage regulation for consumers when voltage in the network changes. The proposed method and structure for its implementation on the basis of two three-phase thyristor reactor keys and a capacitor bank make it possible while changing the network voltage to stabilize the generated reactive power at the input of the substation without creating the current distortions in the power transformer and power transmission simultaneously with stabilizing the substation output voltage. Modeling and research of the start-regulating device as part of a transformer substation was carried out in the MatLab environment. The results of numerical experiments in stationary and dynamic modes of the substation operation showed the feasibility of using the developed technical solutions for the industrial power supply system.


Energies ◽  
2019 ◽  
Vol 12 (4) ◽  
pp. 754 ◽  
Author(s):  
Xiaoqiong He ◽  
Haijun Ren ◽  
Jingying Lin ◽  
Pengcheng Han ◽  
Yi Wang ◽  
...  

The development of the traction power supply system (TPSS) is limited by the existence of the neutral section in the present system. The advanced co-phase traction power supply system (ACTPSS) can reduce the neutral section completely and becomes an important research and development direction of the railway. To ensure the stable operation of ACTPSS, it is necessary to carry out an appropriate power analysis. In this paper, the topology of advanced co-phase traction substation is mainly composed by the three-phase to single-phase cascaded converter. Then, the improved PQ decomposition algorithm is proposed to analyze the power flow. The impedance model of the traction network is calculated and established. The power flow analysis and calculation of the ACTPSS with different locations of locomotive are carried out, which theoretically illustrates that the system can maintain stable operation under various working conditions. The feasibility and operation stability of the ACTPSS are verified by the simulations and low power experiments.


2020 ◽  
Vol 216 ◽  
pp. 01163
Author(s):  
Raxmatillo Karimov

This article examines the importance of ensuring the quality of electricity and considers the possibility of using a system for monitoring the quality of electricity in the power supply system. Based on the results of the study, it was found that the use of contactless switching devices as switches of sections of windings of power transformers allows you to abandon current-limiting reactors and resistors. This is achieved by the fact that the switching of the windings occurs at the moment the load current passes through zero.


2022 ◽  
Vol 1 (15) ◽  
pp. 8-11
Author(s):  
Oleg Arsent'ev ◽  
Yuliya Shalashova ◽  
Denis Zaycev

The features of power supply for oil and gas enterprises, the design, features of the operation of gas turbine plants, methods of organizing a power supply system with elements of its own generation are considered, an autonomous power system with the organization of a direct cur-rent link has been developed to ensure stable operation of gas turbine units operating in paral-lel.


2019 ◽  
Vol 2 (1) ◽  
pp. 8-16 ◽  
Author(s):  
P. A. Khlyupin ◽  
G. N. Ispulaeva

Introduction: The co-authors provide an overview of the main types of wind turbines and power generators installed into wind energy devices, as well as advanced technological solutions. The co-authors have identified the principal strengths and weaknesses of existing wind power generators, if applied as alternative energy sources. The co-authors have proven the need to develop an algorithm for the selection of a wind generator-based autonomous power supply system in the course of designing windmill farms in Russia. Methods: The co-authors have analyzed several types of wind turbines and power generators. Results and discussions: The algorithm for the selection of a wind generator-based autonomous power supply system is presented as a first approximation. Conclusion: The emerging algorithm enables designers to develop an effective wind generator-based autonomous power supply system.


Sign in / Sign up

Export Citation Format

Share Document