scholarly journals REGION HOMOGENEITY IN THE LOGARITHMIC IMAGE PROCESSING FRAMEWORK: APPLICATION TO REGION GROWING ALGORITHMS

2019 ◽  
Vol 38 (1) ◽  
pp. 43
Author(s):  
Guillaume Noyel ◽  
Michel Jourlin

In order to create an image segmentation method robust to lighting changes, two novel homogeneity criteria of an image region were studied. Both were defined using the Logarithmic Image Processing (LIP) framework whose laws model lighting changes. The first criterion estimates the LIP-additive homogeneity and is based on the LIP-additive law. It is theoretically insensitive to lighting changes caused by variations of the camera exposure-time or source intensity. The second, the LIP-multiplicative homogeneity criterion, is based on the LIP-multiplicative law and is insensitive to changes due to variations of the object thickness or opacity. Each criterion is then applied in Revol and Jourlin’s (1997) region growing method which is based on the homogeneity of an image region. The region growing method becomes therefore robust to the lighting changes specific to each criterion. Experiments on simulated and on real images presenting lighting variations prove the robustness of the criteria to those variations. Compared to a state-of the art method based on the image component-tree, ours is more robust. These results open the way to numerous applications where the lighting is uncontrolled or partially controlled.

2014 ◽  
Vol 621 ◽  
pp. 594-598
Author(s):  
Chun Yin Hu ◽  
Wan Cheng Tang ◽  
Bang Yan Ye ◽  
Li Dong Liang

In order to improve the real-time performance and accuracy of the traditional SRG(Seeded Region Growing) algorithm in image processing, this paper proposes a intellective and rapid image segmentation by imitating the process of the virus infection in nature, and then implement it on vc++6 platform. On one hand , the algorithm can detecting automatically detect the seeds in image region and can be adapt for uneven-light image by adjusting the parameters based on the brightness of the background; On the other hand, only by one of the image scanning, it can segment and mark the objects from the background. The experimental results show that compared with the traditional SRG algorithm, this algorithm can improve the segmentation speed in different background with higher accuracy.


The Lung Cancer is a most common cancer which causes of death to people. Early detection of this cancer will increase the survival rate. Usually, cancer detection is done manually by radiologists that had resulted in high rate of False Positive (FP) and False Negative (FN) test results. Currently Computed Tomography (CT) scan is used to scan the lung, which is much efficient than X-ray. In this proposed system a Computer Aided Detection (CADe) system for detecting lung cancer is used. This proposed system uses various image processing techniques to detect the lung cancer and also to classify the stages of lung cancer. Thus the rates of human errors are reduced in this system. As the result, the rate of obtaining False positive and (FP) False Negative (FN) has reduced. In this system, MATLAB have been used to process the image. Region growing algorithm is used to segment the ROI (Region of Interest). The SVM (Support Vector Machine) classifier is used to detect lung cancer and to identify the stages of lung cancer for the segmented ROI region. This proposed system produced 98.5 % accuracy when compared to other existing system


2020 ◽  
Vol 2020 ◽  
pp. 1-27
Author(s):  
Jinghua Zhang ◽  
Chen Li ◽  
Frank Kulwa ◽  
Xin Zhao ◽  
Changhao Sun ◽  
...  

To assist researchers to identify Environmental Microorganisms (EMs) effectively, a Multiscale CNN-CRF (MSCC) framework for the EM image segmentation is proposed in this paper. There are two parts in this framework: The first is a novel pixel-level segmentation approach, using a newly introduced Convolutional Neural Network (CNN), namely, “mU-Net-B3”, with a dense Conditional Random Field (CRF) postprocessing. The second is a VGG-16 based patch-level segmentation method with a novel “buffer” strategy, which further improves the segmentation quality of the details of the EMs. In the experiment, compared with the state-of-the-art methods on 420 EM images, the proposed MSCC method reduces the memory requirement from 355 MB to 103 MB, improves the overall evaluation indexes (Dice, Jaccard, Recall, Accuracy) from 85.24%, 77.42%, 82.27%, and 96.76% to 87.13%, 79.74%, 87.12%, and 96.91%, respectively, and reduces the volume overlap error from 22.58% to 20.26%. Therefore, the MSCC method shows great potential in the EM segmentation field.


2013 ◽  
Vol 760-762 ◽  
pp. 1552-1555 ◽  
Author(s):  
Jing Jing Wang ◽  
Xiao Wei Song ◽  
Mei Fang

Image segmentation in medical image processing has been extensively used which has also been applied in different fields of medicine to assist doctors to make the correct judgment and grasp the patient's condition. However, nowadays there are no image threshold segmentation techniques that can be applied to all of the medical images; so it has became a challenging problem. In this paper, it applies a method of identifying edge of the tissues and organs to recognize its contour, and then selects a number of seed points on the contour range to locate the cancer area by region growing. And finally, the result has demonstrated that this method can mostly locate the cancer area accurately.


2013 ◽  
Vol 380-384 ◽  
pp. 1189-1192 ◽  
Author(s):  
Hai Jun Zhao

Image segmentation is a key step in image processing and image analysis and occupies an important position in image engineering.In this paper, basing on maximum variance between-class, an adaptive and multi-objective image segmentation method is proposed. The concrete implement is to determine adaptively the optimum number of threshold of image using the idea of variance decomposition,while calculating the weighted ratio of within class difference and class difference existing in each classification image. By comparing the ratio, the optimum number of target for image can be get. The experimental results show that the sub-images after segmentation are relatively clear and the differences between classes are obvious.


Author(s):  
P. ZAMPERONI

The aim of this paper is to outline a unified approach to feature extraction for segmentation purposes by means of the rank-order filtering of grey values in a neighbourhood of each pixel of a digitized image. In the first section an overview of rank-order filtering for image processing is given, and a fast histogram algorithm is proposed. Section 2 deals with the extraction of a “locally most representative grey value”, defined as the maximum of the local histogram density function. In Section 3 several textural features are described, which can be extracted from the local histogram by means of rank-order filtering, and their properties are discussed. Section 4 formulates some general requirements to be met by the process of image segmentation, and describes a method based upon the features introduced in the former sections. In the last section some experimental results applied to aerial views obtained with the segmentation method of Sect. 4 are reported. These test images have been analyzed within the scope of an investigation centered on terrain recognition for agricultural and ecological purposes.


Author(s):  
Dhanesh Ramachandram ◽  
Graham W. Taylor

We present a image segmentation method based on deep hypercolumndescriptors which produces state-of-the-art results for thesegmentation of several classes of benign and malignant skin lesions.We achieve a Jaccard index of 0.792 on the 2017 ISIC SkinLesion Segmentation Challenge dataset.


Sign in / Sign up

Export Citation Format

Share Document