scholarly journals Recognition of the ‘early’ Sambagawa metamorphism and a schematic cross-section of the Late-Cretaceous Sambagawa subduction zone

2017 ◽  
Vol 123 (9) ◽  
pp. 677-698 ◽  
Author(s):  
Mutsuki Aoya ◽  
Shunsuke Endo
2017 ◽  
Vol 67 (3) ◽  
pp. 393-403 ◽  
Author(s):  
Daniel Madzia ◽  
Marcin Machalski

AbstractBrachauchenine pliosaurids were a cosmopolitan clade of macropredatory plesiosaurs that are considered to represent the only pliosaurid lineage that survived the faunal turnover of marine amniotes during the Jurassic- Cretaceous transition. However, the European record of the Early to early Late Cretaceous brachauchenines is largely limited to isolated tooth crowns, most of which have been attributed to the classic Cretaceous taxon Polyptychodon. Nevertheless, the original material of P. interruptus, the type species of Polyptychodon, was recently reappraised and found undiagnostic. Here, we describe a collection of twelve pliosaurid teeth from the upper Albian-middle Cenomanian interval of the condensed, phosphorite-bearing Cretaceous succession at Annopol, Poland. Eleven of the studied tooth crowns, from the Albian and Cenomanian strata, fall within the range of the morphological variability observed in the original material of P. interruptus from the Cretaceous of England. One tooth crown from the middle Cenomanian is characterized by a gently subtrihedral cross-section. Similar morphology has so far been described only for pliosaurid teeth from the Late Jurassic and Early Cretaceous. Even though it remains impossible to precisely settle the taxonomic distinctions, the studied material is considered to be taxonomically heterogeneous.


2021 ◽  
Author(s):  
Sonia Yeung ◽  
Marnie Forster ◽  
Emmanuel Skourtsos ◽  
Gordon Lister

<div> <p>The Cretaceous arc system formed during closure of West Tethys closure has long been a research focus for crustal geometry and associated ore deposits. Understanding the Africa-Europe motion across time is the key to its resolution. Evidence as to the time that Tethys subduction initiated is preserved in subduction accreted tectonic slices such as in the Gondwanan basement terranes on Ios, Cyclades, Greece. <sup>40</sup>Ar/<sup>39</sup>Ar geochronology in its granitoid basement and the structurally overlying garnet-mica schist tectonic slice identified a Late Cretaceous high pressure, medium temperature (HP–MP) metamorphic event. The timing and metamorphic conditions are comparable with geochronology and metamorphic conditions reported from other Cycladic islands. We suggest the northward extension of the Asteroussia crystalline terrane on Crete should therefore include the Ios basement tectonic slices, thus revising the regional geometry of the terrane stack. The northern part of the Hellenic terrane stack is overlain by individual Cycladic Eclogite-Blueschist terrane slices (e.g., on Ios) and the southern part is underplated by the tectonic units of the external Hellenides (Crete). To make such an architecture possible, we propose a 250-300 km southward jump of the subduction megathrust when the Ios basement terranes were accreted to the European terrane stack. Such a significant leap of the subduction megathrust supports a tectonic mode switch in which crust above the subduction zone was first subjected to shortening followed by a stretching event.  Accretion of the Asteroussia slices to the terrane stack likely commenced at or about ~38 Ma. During accretion, the already stretched and exhumed terranes of the Cycladic Eclogite-Blueschist Unit begun to thrust over the newly accreted Ios basement. The subduction jump had likely been accomplished by ~35 Ma, with rollback recommencing after a period of flat slab subduction followed by slab break off in the new subduction zone. This would allow explanation of the extreme extension that exhumed the Ios basement terrane, with the Asteroussia slices defining the core of the Ios metamorphic core complex, followed by the onset of Oligo-Miocene extension and accompanying magmatism in the Cyclades.</p> </div>


2011 ◽  
Vol 148 (5-6) ◽  
pp. 762-801 ◽  
Author(s):  
HADI SHAFAII MOGHADAM ◽  
ROBERT J. STERN

AbstractThe Zagros fold-and-thrust belt of SW Iran is a young continental convergence zone, extending NW–SE from eastern Turkey through northern Iraq and the length of Iran to the Strait of Hormuz and into northern Oman. This belt reflects the shortening and off-scraping of thick sediments from the northern margin of the Arabian platform, essentially behaving as the accretionary prism for the Iranian convergent margin. Distribution of Upper Cretaceous ophiolites in the Zagros orogenic belt defines the northern limit of the evolving suture between Arabia and Eurasia and comprises two parallel belts: (1) Outer Zagros Ophiolitic Belt (OB) and (2) Inner Zagros Ophiolitic Belt (IB). These belts contain complete (if disrupted) ophiolites with well-preserved mantle and crustal sequences. Mantle sequences include tectonized harzburgite and rare ultramafic–mafic cumulates as well as isotropic gabbro lenses and isolated dykes within the harzburgite. Crustal sequences include rare gabbros (mostly in IB ophiolites), sheeted dyke complexes, pillowed lavas and felsic rocks. All Zagros ophiolites are overlain by Upper Cretaceous pelagic limestone. Limited radiometric dating indicates that the OB and IB formed at the same time during Late Cretaceous time. IB and OB components show strong suprasubduction zone affinities, from mantle harzburgite to lavas. This is shown by low whole-rock Al2O3and CaO contents and spinel and orthopyroxene compositions of mantle peridotites as well as by the abundance of felsic rocks and the trace element characteristics of the lavas. Similarly ages, suprasubduction zone affinities and fore-arc setting suggest that the IB and OB once defined a single tract of fore-arc lithosphere that was disrupted by exhumation of subducted Sanandaj–Sirjan Zone metamorphic rocks. Our data for the OB and IB along with better-studied ophiolites in Cyprus, Turkey and Oman compel the conclusion that a broad and continuous tract of fore-arc lithosphere was created during Late Cretaceous time as the magmatic expression of a newly formed subduction zone developed along the SW margin of Eurasia.


2007 ◽  
Vol 144 (5) ◽  
pp. 797-810 ◽  
Author(s):  
GAVIN HEUNG-NGAI CHAN ◽  
JOHN MALPAS ◽  
COSTAS XENOPHONTOS ◽  
CHING-HUA LO

The Troodos ophiolite in Cyprus and Baer–Bassit ophiolite in Syria together form part of the Tethyan ophiolite belt. They were generated in a supra-subduction zone setting in Late Cretaceous times. As with many of the ophiolite occurrences in this belt, the sequences are closely associated with tectonic ‘coloured mélange’ zones, which contain, among a variety of lithologies, metre- to kilometre-size blocks of metamorphic rocks. Precise 40Ar–39Ar laser step-heating experiments performed on four amphibolites from SW Cyprus and six from NW Syria, yield plateau ages ranging from 75.7±0.3 Ma to 88.9±0.8 Ma in Cyprus and 71.7±0.5 to 88.4±0.4 Ma in Syria. The older limits of these time spans are coeval with the age of the formation of the associated ophiolites. Unlike other metamorphic sole rocks which seem to form in relatively short time spans, these metamorphic rocks found in Cyprus and Syria are interpreted to have formed in Late Cretaceous times by accretion below the overriding Troodos and Baer–Bassit crust for a period of 15–18 Ma. The metamorphic complexes were exhumed by extension and crustal thinning associated with subduction roll-back and the rotation of the overriding plate until the cessation of subduction in Maastrichtian times. In Cyprus, the exhumed metamorphic complex was incorporated into an accretionary prism constructed primarily of the collapsed Mamonia passive margin sequence intercalated with rocks of the Troodos ophiolite during plate collision in the Maastrichtian. Concomitantly, in Syria, the Baer–Bassit ophiolite and subcreted metamorphic complex were emplaced onto the Arabian passive margin and fragmented into blocks and knockers, forming the Baer–Bassit mélange.


2020 ◽  
Vol 9 (8) ◽  
Author(s):  
Carlos Roberto Candeiro ◽  
Sthepen Brusatte ◽  
Raoni Ribeiro Guedes Costa ◽  
Michael Ulian ◽  
Bruno Ferreira Martins ◽  
...  

The objective of this article is to describe the first record of a theropod carnivorous dinosaur from the Late Cretaceous of the Adamantina Formation (Bauru Group, Paraná Basin) in the south of the state of Goiás in the Midwest region of Brazil. The methodology of this work was based on a bibliographic survey about the characteristics of teeth of theropods and the geology of the region, in addition to the description and morphological comparisons. This specimen was found in a geodiversity site called Serra da Portaria, in the Paraúna State Park, municipality of Paraúna, where residuals from the Adamantina Formation is exposed. The specimen, a fragmentary tooth covered with iron oxide, but with a partially preserved crown, was assigned as a percentage to an undetermined theropod for having a labiolingually compressed crown and cross section. In addition to the Bauru Group in the state of Goiás, only remnants of sauropod herbivorous dinosaurs are known for the Adamantina and Marília formations, the tooth described here is the first osteological record of a theropod from the south of Goiás.


10.1144/m54.5 ◽  
2021 ◽  
Vol 54 (1) ◽  
pp. 67-103
Author(s):  
Andreas Scharf ◽  
Frank Mattern ◽  
Mohammed Al-Wardi ◽  
Gianluca Frijia ◽  
Daniel Moraetis ◽  
...  

AbstractThe tectonic evolution of the Oman Mountains as of the Neoproterozoic begins with a major extensional event, the Neoproterozoic Abu Mahara rifting. It was followed by the compressional Nabitah event, still during the Neoproterozoic, in Oman but possibly not in the study area. During the earliest Cambrian, the Jabal Akhdar area was affected by the Cadomian Orogeny, marked by NE--SW shortening. It is unclear, whether the Saih Hatat area was exposed to the Cadomian deformation, too. Still during the lower Cambrian, the Angudan Orogeny followed, characterized by NW--SE shortening. An episode of rifting affected the Saih Hatat area during the mid-Ordovician. During the mid-Carboniferous, both dome areas were deformed by tilting and large-scale open folding in the course of the ‘Hercynian’ event. As a consequence, a major unconformity formed. As another Late Paleozoic event, the Permian break-up of Pangaea and subsequent formation of the Hawasina ocean basin, are recorded in the Southeastern Oman Mountains. As a result, a passive margin formed which existed until the mid-Cretaceous, characterized by deposition of mostly shelfal carbonates. This interval of general tectonic quiescence was interrupted during the early Jurassic by uplift and tilting of the Arabian Platform. The platform collapsed during the late Cretaceous, related to the arrival of the obducted allochthonous nappes including the Semail Ophiolite, transforming the passive margin to an active margin.The Semail Ophiolite formed most likely above a subduction zone within the Neo-Tethys Ocean during the Cenomanian while parts of the Arabian Plate were subducted to the NE. Formation of oceanic lithosphere and SW-thrusting was broadly coeval, resulting in ophiolite obduction onto the Hawasina Basin. The Semail Ophiolite and the Hawasina rocks combined were thrust further onto the Arabian Plate. Their load created a foreland basin and forebulge within the Arabian Platform. Once the continental lithosphere of the Arabian Platform was forced into the subduction zone, a tear between the dense oceanic lithosphere and the buoyant continental lithosphere developed. This led to rapid uplift and exhumation of subducted continental lithosphere of the Saih Hatat area, while obduction was still going on, causing in multiple and intense folding/thrusting within the eastern Saih Hatat Dome. Exhumation of the Saih Hatat Dome was massive. The emplacement of the ophiolite was completed during the Campanian/Maastrichtian. For completeness, we also present alternative models for the developmental history of the Semail Ophiolite.Immediately after emplacement, the Arabian lithosphere underwent intense top-to-the-NE extensional shearing. Most of the Saih Hatat Dome was exhumed during the latest Cretaceous to Early Eocene, associated with major extensional shearing at its flanks. Further convergence during the late Eocene to Miocene resulted in exhumation of the Jabal Akhdar Dome and some gentle exhumation of the Saih Hatat Dome, shaping the present-day Southeastern Oman Mountains. In the coastal area, east and SE of the Saih Hatat Dome, some late Cretaceous to present-day uplift is evident by, e.g., uplifted marine terraces. The entire Oman Mountains are uplifting today, which is evident by the massive wadi incision into various rock units, including wadi deposits which may form overhangs.


Sign in / Sign up

Export Citation Format

Share Document