Geodynamic evolution of Upper Cretaceous Zagros ophiolites: formation of oceanic lithosphere above a nascent subduction zone

2011 ◽  
Vol 148 (5-6) ◽  
pp. 762-801 ◽  
Author(s):  
HADI SHAFAII MOGHADAM ◽  
ROBERT J. STERN

AbstractThe Zagros fold-and-thrust belt of SW Iran is a young continental convergence zone, extending NW–SE from eastern Turkey through northern Iraq and the length of Iran to the Strait of Hormuz and into northern Oman. This belt reflects the shortening and off-scraping of thick sediments from the northern margin of the Arabian platform, essentially behaving as the accretionary prism for the Iranian convergent margin. Distribution of Upper Cretaceous ophiolites in the Zagros orogenic belt defines the northern limit of the evolving suture between Arabia and Eurasia and comprises two parallel belts: (1) Outer Zagros Ophiolitic Belt (OB) and (2) Inner Zagros Ophiolitic Belt (IB). These belts contain complete (if disrupted) ophiolites with well-preserved mantle and crustal sequences. Mantle sequences include tectonized harzburgite and rare ultramafic–mafic cumulates as well as isotropic gabbro lenses and isolated dykes within the harzburgite. Crustal sequences include rare gabbros (mostly in IB ophiolites), sheeted dyke complexes, pillowed lavas and felsic rocks. All Zagros ophiolites are overlain by Upper Cretaceous pelagic limestone. Limited radiometric dating indicates that the OB and IB formed at the same time during Late Cretaceous time. IB and OB components show strong suprasubduction zone affinities, from mantle harzburgite to lavas. This is shown by low whole-rock Al2O3and CaO contents and spinel and orthopyroxene compositions of mantle peridotites as well as by the abundance of felsic rocks and the trace element characteristics of the lavas. Similarly ages, suprasubduction zone affinities and fore-arc setting suggest that the IB and OB once defined a single tract of fore-arc lithosphere that was disrupted by exhumation of subducted Sanandaj–Sirjan Zone metamorphic rocks. Our data for the OB and IB along with better-studied ophiolites in Cyprus, Turkey and Oman compel the conclusion that a broad and continuous tract of fore-arc lithosphere was created during Late Cretaceous time as the magmatic expression of a newly formed subduction zone developed along the SW margin of Eurasia.

2012 ◽  
Vol 150 (2) ◽  
pp. 283-299 ◽  
Author(s):  
FATIH KARAOĞLAN ◽  
OSMAN PARLAK ◽  
URS KLÖTZLI ◽  
MARTIN THÖNI ◽  
FRIEDRICH KOLLER

AbstractThe Kızıldağ (Hatay) ophiolite in Turkey represents remnants of the southern Neotethyan ocean and is characterized by a complete ocean lithospheric section. It formed in a fore-arc setting above a N-dipping intraoceanic subduction zone, and represents the undeformed, more northerly part of the same thrust sheet that also forms the Baer–Bassit ophiolite to the south. The ophiolite was emplaced southwards from the southerly Neotethyan ocean in Maastrichtian time. U–Pb and Sm–Nd dates are used to constrain the crystallization age and duration of magmatic activity of the Kızıldağ ophiolite. U–Pb dating yielded ages of 91.7 ± 1.9 Ma for a plagiogranite and 91.6 ± 3.8 Ma for a cumulate gabbro. The cumulate gabbro also yielded a Sm–Nd isochron age of 95.3 ± 6.9 Ma. The measured ages suggest that the oceanic crust of the Kızıldağ ophiolite formed in a maximum time period of 6 Ma, and that the plagiogranite may have formed later than the gabbroic section. The U–Pb zircon ages from the Kızıldağ ophiolite and the cooling age of a metamorphic sole beneath the Baer–Bassit ophiolite are indistinguishable within the analytical uncertainties. This indicates the presence of young and hot oceanic lithosphere at the time of intraoceanic subduction/thrusting in the southern Neotethys. The U–Pb zircon ages from the Kızıldağ, the Troodos and the Semail ophiolites overlap within analytical uncertainties, suggesting that these ophiolites are contemporaneous and genetically and tectonically related within the same Late Cretaceous southern Neotethyan ocean.


2009 ◽  
Vol 146 (4) ◽  
pp. 567-590 ◽  
Author(s):  
SAMUEL P. RICE ◽  
ALASTAIR H. F. ROBERTSON ◽  
TIMUR USTAÖMER ◽  
NURDAN İNAN ◽  
KEMAL TASLI

AbstractSix individual tectonostratigraphic units are identified within the İzmir–Ankara–Erzincan Suture Zone in the critical Erzincan area of the Eastern Pontides. The Ayıkayası Formation of Campanian–Maastrichtian age is composed of bedded pelagic limestones intercalated with polymict, massive conglomerates. The Ayıkayası Formation conformably overlies the Tauride passive margin sequence in the Munzur Mountains to the south and is interpreted as an underfilled foredeep basin. The Refahiye Complex, of possible Late Cretaceous age, is a partial ophiolite composed of ~75% (by volume) serpentinized peridotite (mainly harzburgite), ~20% diabase and minor amounts of gabbro and plagiogranite. The complex is interpreted as oceanic lithosphere that formed by spreading above a subduction zone. Unusual screens of metamorphic rocks (e.g. marble and schist) locally occur between sheeted diabase dykes. The Upper Cretaceous Karayaprak Mélange exhibits two lithological associations: (1) the basalt + radiolarite + serpentinite association, including depleted arc-type basalts; (2) the massive neritic limestone + lava + volcaniclastic association that includes fractionated, intermediate-composition lavas, and is interpreted as accreted Neotethyan seamount(s). The several-kilometre-thick Karadağ Formation, of Campanian–Maastrichtian age, is composed of greenschist-facies volcanogenic rocks of mainly basaltic to andesitic composition, and is interpreted as an emplaced Upper Cretaceous volcanic arc. The Campanian–Early Eocene Sütpınar Formation (~1500 m thick) is a coarsening-upward succession of turbiditic calcarenite, sandstone, laminated mudrock, volcaniclastic sedimentary rocks that includes rare andesitic lava, and is interpreted as a regressive forearc basin. The Late Paleocene–Eocene Sipikör Formation is a laterally varied succession of shallow-marine carbonate and siliciclastic lithofacies that overlies deformed Upper Cretaceous units with an angular unconformity. Structural study indicates that the assembled accretionary prism, supra-subduction zone-type oceanic lithosphere and volcanic arc units were emplaced northwards onto the Eurasian margin and also southwards onto the Tauride (Gondwana-related) margin during Campanian–Maastrichtian time. Further, mainly southward thrusting took place during the Eocene in this area, related to final closure of Tethys. Our preferred tectonic model involves northward subduction, supra-subduction zone ophiolite genesis and arc magmatism near the northerly, Eurasian margin of the Mesozoic Tethys.


10.1144/m54.5 ◽  
2021 ◽  
Vol 54 (1) ◽  
pp. 67-103
Author(s):  
Andreas Scharf ◽  
Frank Mattern ◽  
Mohammed Al-Wardi ◽  
Gianluca Frijia ◽  
Daniel Moraetis ◽  
...  

AbstractThe tectonic evolution of the Oman Mountains as of the Neoproterozoic begins with a major extensional event, the Neoproterozoic Abu Mahara rifting. It was followed by the compressional Nabitah event, still during the Neoproterozoic, in Oman but possibly not in the study area. During the earliest Cambrian, the Jabal Akhdar area was affected by the Cadomian Orogeny, marked by NE--SW shortening. It is unclear, whether the Saih Hatat area was exposed to the Cadomian deformation, too. Still during the lower Cambrian, the Angudan Orogeny followed, characterized by NW--SE shortening. An episode of rifting affected the Saih Hatat area during the mid-Ordovician. During the mid-Carboniferous, both dome areas were deformed by tilting and large-scale open folding in the course of the ‘Hercynian’ event. As a consequence, a major unconformity formed. As another Late Paleozoic event, the Permian break-up of Pangaea and subsequent formation of the Hawasina ocean basin, are recorded in the Southeastern Oman Mountains. As a result, a passive margin formed which existed until the mid-Cretaceous, characterized by deposition of mostly shelfal carbonates. This interval of general tectonic quiescence was interrupted during the early Jurassic by uplift and tilting of the Arabian Platform. The platform collapsed during the late Cretaceous, related to the arrival of the obducted allochthonous nappes including the Semail Ophiolite, transforming the passive margin to an active margin.The Semail Ophiolite formed most likely above a subduction zone within the Neo-Tethys Ocean during the Cenomanian while parts of the Arabian Plate were subducted to the NE. Formation of oceanic lithosphere and SW-thrusting was broadly coeval, resulting in ophiolite obduction onto the Hawasina Basin. The Semail Ophiolite and the Hawasina rocks combined were thrust further onto the Arabian Plate. Their load created a foreland basin and forebulge within the Arabian Platform. Once the continental lithosphere of the Arabian Platform was forced into the subduction zone, a tear between the dense oceanic lithosphere and the buoyant continental lithosphere developed. This led to rapid uplift and exhumation of subducted continental lithosphere of the Saih Hatat area, while obduction was still going on, causing in multiple and intense folding/thrusting within the eastern Saih Hatat Dome. Exhumation of the Saih Hatat Dome was massive. The emplacement of the ophiolite was completed during the Campanian/Maastrichtian. For completeness, we also present alternative models for the developmental history of the Semail Ophiolite.Immediately after emplacement, the Arabian lithosphere underwent intense top-to-the-NE extensional shearing. Most of the Saih Hatat Dome was exhumed during the latest Cretaceous to Early Eocene, associated with major extensional shearing at its flanks. Further convergence during the late Eocene to Miocene resulted in exhumation of the Jabal Akhdar Dome and some gentle exhumation of the Saih Hatat Dome, shaping the present-day Southeastern Oman Mountains. In the coastal area, east and SE of the Saih Hatat Dome, some late Cretaceous to present-day uplift is evident by, e.g., uplifted marine terraces. The entire Oman Mountains are uplifting today, which is evident by the massive wadi incision into various rock units, including wadi deposits which may form overhangs.


2010 ◽  
Vol 58 ◽  
pp. 99-109 ◽  
Author(s):  
Finn Surlyk ◽  
Lars Ole Boldreel ◽  
Lars Stemmerik ◽  
Holger Lykke Andersen

Sorgenfrei (1951) identified a number of NW–SE oriented highs in the Upper Cretaceous – Danian Chalk Group in eastern Denmark, including the Skælskør structure and interpreted them as anticlinal folds formed by wrenching along what today is known as the Ringkøbing-Fyn High. Recent reflection seismic studies of the Chalk Group in Øresund and Kattegat have shown that similar highs actually represent topographic highs on the Late Cretaceous – Danian seafloor formed by strong contourparallel bottom currents. Reflection seismic data collected over the Skælskør structure in order to test the hypothesis of Sorgenfrei show that the Base Chalk reflection is relatively flat with only very minor changes in inclination and cut by only a few minor faults. The structure is situated along the northern margin of a high with roots in a narrow basement block, projecting towards the northwest from the Ringkøbing Fyn High into the Danish Basin. The elevated position is maintained due to reduced subsidence as compared with the Danish Basin north of the high. The hypothesis of wrench tectonics as origin can be refuted. The seismic data show that the upper part of the Chalk Group is characterised by irregular mounded reflections, interpreted as representing contourite drifts, mounds and channels formed by strong, mainly late Maastrichtian bottom currents. The Skælskør structure of Sorgenfrei is thus in reality a Late Cretaceous topographic seafloor high formed by a combination of differential subsidence complemented by topographic features on the seafloor created by bottom currents in the late Maastrichtian.


2014 ◽  
Vol 152 (2) ◽  
pp. 269-286 ◽  
Author(s):  
JAN GOLONKA ◽  
MICHAŁ KROBICKI ◽  
ANNA WAŚKOWSKA ◽  
MAREK CIESZKOWSKI ◽  
ANDRZEJ ŚLĄCZKA

AbstractThe olistostromes form two belts within the Pieniny Klippen Belt (PKB) in the Northern Carpathians. They mark an early stage of the development of the accretionary prism. The first belt was formed during Late Cretaceous time as a result of subduction of the southern part of the Alpine Tethys. The fore-arc basin originated along this subduction zone, with synorogenic flysch deposits. Huge olistoliths deposited within the Cretaceous–Palaeogene flysch of the Złatne Basin, presently located in the vicinity of the Haligovce village (eastern Slovakia), provide a good example of the fore-arc olistostrome setting. The second belt is related to the movement of the accretionary prism, which overrode the Czorsztyn Ridge during Late Cretaceous–Paleocene time. The destruction of this ridge led to the formation of submarine slumps and olistoliths along the southern margin of the Magura Basin. The Upper Cretaceous – Paleocene flysch sequences of the Magura Basin constitute the matrix of olistostromes. The large Homole block in the Jaworki village represents the best example of the Magura Basin olistolith. Numerous examples of olistoliths were documented in western Slovakia, Poland, eastern Slovakia and Ukraine. The olistostromes formed within the Złatne and Magura basins orginated during the tectonic process, forming the olistostrome belts along the strike of the PKB structure.


1983 ◽  
Vol 73 (4) ◽  
pp. 205-219 ◽  
Author(s):  
M. P. Searle

ABSTRACTThe Tibetan–Tethys zone of the Zanskar Himalaya shows a complete Mesozoic shelf carbonate sequence overlying metamorphic basement of the Central crystalline complex and Palaeozoic sedimentary rocks. Continental rifting in the Permian produced the alkaline and basaltic Panjal volcanic rocks and by Triassic time a small ocean basin was developed in the Indus-Tsangpo zone. Stable sedimentation continued until the Middle-Late Cretaceous when a thick sequence of tholeiitic to andesitic island arc lavas (Dras arc) were erupted in the basin above a N-dipping subduction zone. The Spontang ophiolite was emplaced southwards onto the Zanskar shelf edge during latest Cretaceous or earliest Tertiary times.Following emplacement of the Spontang ophiolite, deep-sea sedimentation ended abruptly with initial collision between the Indian plate and the Dras island arc. Emplacement of the massive Ladakh (Trans-Himalayan) batholith along the southern margin of Tibet in late Cretaceous-Eocene time occurred by crustal melting as a result of northward subduction of Mesozoic oceanic crust along the Indus subduction zone. Southward-directed thrusting in both Zanskar and Indus zones accompanied ocean closure during the late Cretaceous–Eocene. Late Tertiary compression caused intense folding, overturning and a phase of northward-directed thrusting along the Indus suture zone and the northern margin of the Tibetan–Tethys zone, resulting in a large amount of crustal shortening.


Geology ◽  
2019 ◽  
Vol 47 (11) ◽  
pp. 1029-1033 ◽  
Author(s):  
Andrew K. Laskowski ◽  
Devon A. Orme ◽  
Fulong Cai ◽  
Lin Ding

Abstract Late Cretaceous trench basin strata were deposited in the subduction zone that consumed Neo-Tethyan oceanic lithosphere along the southern margin of the proto–Tibetan Plateau. We conducted detrital zircon (DZ) U-Pb geochronology on six trench basin samples (n = 1716) collected near Dênggar, Tibet (∼500 km west of Lhasa), to assess the provenance of these rocks and reconstruct Late Cretaceous sediment transport pathways. They contained DZ ages that point to a unique source around Lhasa city, north of the Late Cretaceous Gangdese magmatic arc. The modern Lhasa River catchment contains the requisite sources, and its main trunk transects the Gangdese magmatic arc, joining with the Yarlung River at a barbed junction at the India-Asia suture. We infer that the Lhasa River is an ancient feature that transported sediment to the subduction zone in Late Cretaceous time and persisted during India-Asia collision.


2021 ◽  
Author(s):  
Jie Yuan ◽  
Zhenyu Yang ◽  
Chenglong Deng

<p>The extent of Greater India with precise and accurate chronological control is a key issue that concerns the spatio-temporal pattern and tectonic models of the India-Asia collision.<strong> </strong>Here we carried out a detailed magnetostratigraphic and paleomagnetic study on the Upper Cretaceous oceanic red beds (CORBs) (Chuangde Formation) exposed in the Tethyan Himalaya terrane. The high temperature (650‒690°C) magnetic components are isolated from two separated sections at Cailangba and display both normal and reverse polarities, which were used to construct magnetic polarity sequences of the sections that can be subsequently correlated to the geomagnetic polarity time scale (GPTS) to better estimate the age of the rocks. With the aid of previously published biostratigraphy by Chen et al. (2011, Sedimentary Geology), the polarity magnetozones of the Cailangba B section are correlated to chron C32r.2r (74.3–74.0 Ma) and the upper part of chron C33n (79.9–74.3 Ma), and the single normal polarity magnetozone of the Cailangba A section is correlated to the upper part of chron C33n (79.9–74.3 Ma). As a result, the CORBs in the Cailangba A and B sections represent the time interval of 76.2–74.0 Ma by magnetobiostratigraphy. Two independent methods of inclination shallowing correction were tested, which all indicate a bias inclination of ~70%. After inclination shallowing correction, the mean inclination increased to ‒35.0°, giving what we propose to be a high-quality Late Cretaceous paleopole of 40.8°N/256.3°E, A<sub>95</sub> =1.8°. Our findings indicate that the Indian passive continental margin was situated at a paleolatitude of 19.4° ± 1.8°S at ~75 Ma. These data suggest that Greater India extended about 715 ± 374 km farther north from the present northern margin of India in the Late Cretaceous, implying a latitudinal width of 3641 ± 308 km for the Neo-Tethys Ocean that still separated the Lhasa terrane of southern part of the Asian plate and the Greater India.</p>


2017 ◽  
Vol 54 (4) ◽  
pp. 265-293 ◽  
Author(s):  
Roger Matson ◽  
Jack Magathan

The Hanna Basin is one of the world’s deeper intracratonic depressions. It contains exceptionally thick sequences of mature, hydrocarbon-rich Paleozoic through Eocene rocks and has the requisite structural and depositional history to be a significant petroleum province. The Tertiary Hanna and Ferris formations consist of up to 20,000 ft of organic-rich lacustrine shale, shaly mudstone, coal, and fluvial sandstone. The Upper Cretaceous Medicine Bow, Lewis, and Mesaverde formations consist of up to 10,000 ft of marine and nonmarine organic-rich shale enclosing multiple stacked beds of hydrocarbon-bearing sandstone. Significant shows of oil and gas in Upper Cretaceous and Paleocene rocks occur in the basin. Structural prospecting should be most fruitful around the edges where Laramide flank structures were created by out-of-the-basin thrust faults resulting from deformation of the basin’s unique 50-mile wide by 9-mile deep sediment package. Strata along the northern margin of the basin were compressed into conventional anticlinal folds by southward forces emanating from Emigrant Trail-Granite Mountains overthrusting. Oil and gas from Pennsylvanian to Upper Cretaceous aged rocks have been found in such structures near the Hanna Basin. Only seven wells have successfully probed the deeper part of the Hanna Basin (not including Anadarko’s #172 Durante lost hole, Sec. 17, T22N, R82W, lost in 2004, hopelessly stuck at 19,700 ft, unlogged and untested). Two of these wells tested gas at commercial rates from Upper Cretaceous rocks at depths of 10,000 to 12,000 ft. Sparse drilling along the Hanna Basin’s flanks has also revealed structures from 3,000 to 7,000 feet deep which yielded significant shows of oil and gas.


2019 ◽  
Vol 59 (6) ◽  
pp. 1074-1085
Author(s):  
E. A. Sokolova

The article analyzes own data on the species composition of shells of planktonic foraminifera from the Upper Cretaceous sediments of the Indian Oceans, as well as from the sections of the offshore seas of Australia. The species of planktonic foraminifera are grouped and arranged in a climatic series. An analysis of the change in the systematic composition of foraminifers made it possible to distinguish periods of extreme and intermediate climatic states in the Late Cretaceous.


Sign in / Sign up

Export Citation Format

Share Document