scholarly journals Stratigraphy and eruption age of the volcanic rocks in the west of Miyanoharu area, Kumamoto Prefecture - Age and distribution of the volcanic activity of central-north Kyushu, Japan.

1985 ◽  
Vol 91 (4) ◽  
pp. 289-303 ◽  
Author(s):  
Hiroki KAMATA
2014 ◽  
Vol 152 (3) ◽  
pp. 429-443 ◽  
Author(s):  
FABRIZIO BERRA ◽  
MASSIMO TIEPOLO ◽  
VALERIA CAIRONI ◽  
GIAN BARTOLOMEO SILETTO

AbstractU–Pb zircon ages from volcanic rocks of Early Permian age (Southern Alps, Lombardy), associated with fault-controlled transtensional continental basins, were determined with the laser ablation (LA)-ICP-MS technique. Four samples were collected at the base and at the top of the up to 1000 m thick volcaniclastic unit of the Cabianca Volcanite. This unit pre-dates the development of a sedimentary succession that still contains, at different stratigraphic levels, volcanic intercalations. Age results from a tuff in the basal part of the unit constrain the onset of the volcanic activity to 280 ± 2.5 Ma. Ignimbritic samples from the upper part of the unit show a large scatter in the age distribution. This is interpreted as the occurrence of antecrystic and autocrystic zircons. The youngest autocrystic zircons (c. 270 Ma) are thus interpreted as better constraining the eruption age, constraining the duration of the volcanic activity in the Orobic Basin to about 10 Ma. The new geochronological results compared with those of other Early Permian basins of the Southern Alps reveal important differences that may reflect (1) a real time-transgressive beginning and end of the volcanic activity or (2) the complex mixing of antecrystic and autocrystic zircon populations in the analysed samples.


Author(s):  
A.I. Malinovsky ◽  

The article discusses the results of studying heavy clastic minerals from the Cretaceous sandy rocks of the West Sakhalin Terrane, and also presents their paleogeodynamic interpretation. It is shown that in terms of mineralogical and petrographic parameters, the terrane sandstones correspond to typical graywackes and are petrogenic rocks formed mainly by destruction of igneous rocks of the source areas. The sediments were found to contain both sialic, granite-metamorphic association minerals, and femic, formed by products of the destruction of basic and ultrabasic volcanic rocks. The interpretation of the entire set of data on the content, distribution and microchemical composition of heavy minerals was carried out by comparing them with minerals from older rocks and modern sediments accumulated in known geodynamic settings. The results obtained indicate that during the Cretaceous, sedimentation occurred along the continent-ocean boundary in a basin associated with large-scale left-lateral transform movements of the Izanagi Plate relative to the Eurasian continent. The source area that supplied clastic material to that basin combined a sialic landmass composed of granite-metamorphic and sedimentary rocks, a mature deeply dissected ensialic island arc, and fragments of accretion prisms, in the structure of which involved ophiolites.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
L. E. Augland ◽  
V. V. Ryabov ◽  
V. A. Vernikovsky ◽  
S. Planke ◽  
A. G. Polozov ◽  
...  

AbstractEmplacement of large volumes of (sub)volcanic rocks during the main pulse of the Siberian Traps occurred within <1 m.y., coinciding with the end-Permian mass extinction. Volcanics from outside the main Siberian Traps, e.g. Taimyr and West Siberia, have since long been correlated, but existing geochronological data cannot resolve at a precision better than ~5 m.y. whether (sub)volcanic activity in these areas actually occurred during the main pulse or later. We report the first high precision U-Pb zircon geochronology from two alkaline ultramafic-felsic layered intrusive complexes from Taimyr, showing synchronicity between these and the main Siberian Traps (sub)volcanic pulse, and the presence of a second Dinerian-Smithian pulse. This is the first documentation of felsic intrusive magmatism occurring during the main pulse, testifying to the Siberian Trap’s compositional diversity. Furthermore, the intrusions cut basal basalts of the Taimyr lava stratigraphy hence providing a minimum age of these basalts of 251.64 ± 0.11 Ma. Synchronicity of (sub)volcanic activity between Taimyr and the Siberian Traps imply that the total area of the Siberian Traps main pulse should include a ~300 000 km2 area north of Norilsk. The vast aerial extent of the (sub)volcanic activity during the Siberian Traps main pulse may explain the severe environmental consequences.


1994 ◽  
Vol 13 (1) ◽  
pp. 35-46 ◽  
Author(s):  
Carl-Henry Geschwind

In the 1860's and 70's, microscopic petrography flourished in Germany, where descriptions and classifications of rocks were highly valued for their own sake. American geologists, however, were more interested in stratigraphical correlations and had relatively little use for petrographical details. Thus, such Americans as George Hawes and Alexis Julien, who attempted to introduce the microscope for purely petrographical work in the early 1870's, had great difficulties in finding an audience. During the late 1870's, however, a number of American geologists-including federal geologists working amongst the volcanic rocks of the West, state geologists mapping in the Lake Superior region, and mining geologists examining the Comstock Lode and the Leadville district-came to appreciate the aid microscopic petrography could provide for stratigraphical correlations. This growing interest led to the hiring of a number of microscopic petrographers around 1880. These petrographers were trained in Germany, where they had imbibed the German passion for petrography for its own sake, but most of them adapted themselves to the American practice of using petrography for stratigraphy. Unlike many of their German counterparts, these American petrographers spent a substantial portion of their time in the field and combined mapping with microscopic examinations to solve stratigraphical problems. Thus, the different scientific cultures of Germany and the U.S. significantly affected the ways in which the petrographic microscope was used.


1876 ◽  
Vol 3 (1) ◽  
pp. 5-15 ◽  
Author(s):  
John W. Judd

In our last chapter we referred to the frequency of the occurrence of lakes in districts which contain volcanos that are still active or have only recently become extinct. In connexion with this subject, we must also call attention to the interesting circumstance that, wherever the geologist finds evidence of the former action of subaerial volcanos, there he almost invariably detects proofs also, that numerous lakes have been formed and successively filled up with sediments. Very strikingly is this fact illustrated among the great series of volcanic rocks, which, during a great portion of the Tertiary period, were being erupted in Central and Southern Europe; and which form an almost complete girdle surrounding, but lying at a considerable distance from, the great central masses of the Alps. We have in these districts the most unmistakable palæontological evidence that the periods of violent volcanic activity were also characterized by the repeated formation and filling up of lake-basins.


1986 ◽  
Vol 123 (6) ◽  
pp. 699-702 ◽  
Author(s):  
J. A. Naranjo ◽  
A. Puig ◽  
M. Suárez

AbstractRadiometric dates on specimens of plutons of the Coastal Cordillera of Atacama span the period 300–110 Ma. A group of dates cluster around 190 Ma and evidence is presented which strongly suggests that they represent near crystallization ages. The geographic distribution of these plutons, adjacent to Liassic tuffs and lavas (Pan de Azúcar and Posada de los Hidalgo formations), suggests a genetic relationship between them, and that the plutons were the roots of the Lower Jurassic volcanic chain. The location of these granitoids to the west of the Liassic volcanic rocks, favours a previous idea that the Liassic basin extended eastwards as a back-arc or intra-arc basin. The host rocks to the Lower Jurassic plutons include Palaeozoic granitoids and metasedimentary rocks, indicating that the volcanic chain was founded on continental crust. The distance from the Liassic plutons to the present-day trench is less than 100 km, which indicates the possibility that part of the arc-trench system of that time is missing.


2010 ◽  
Vol 78 (4) ◽  
pp. 912-920
Author(s):  
ZHANG Zhaochong ◽  
XIAO Xuchang ◽  
WANG Jun ◽  
WANG Yong ◽  
LUO Zhaohua

Sign in / Sign up

Export Citation Format

Share Document