Temperatures Achieved During The Heating Of Cooking Oil In Chip-Pans

10.5580/2bfa ◽  
2012 ◽  
Vol 8 (1) ◽  
Keyword(s):  
Author(s):  
Jamal Othman ◽  
Yaghoob Jafari

Malaysia is contemplating removal of most of her subsidy support measures including subsidies on cooking oil which is largely palm oil based. This paper aims to examine the effects of cooking oil subsidy removals on the competitiveness of the oil palm subsector and related markets. This is done by developing and applying a comparative static, multi-commodity, partial equilibrium model with multi-stages of production function for the Malaysian perennial crops subsector which explicitly links different stages of production, primary and intermediate input markets, trade, and policy linkages. Results partly suggest that export of cooking oil will increase by 0.2 per cent due to a 10 per cent cooking oil subsidy reduction, while domestic output of cooking oil may eventually see a net decline of 1.97 per cent. The results clearly point out that the effect of reducing cooking oil subsidies is relatively small at the upstream levels and therefore it only induces minute effects on factor markets. Consequently, the market for other agricultural crops is projected to change very marginally.   Keywords: Multicomodity, comparative statics, partial equilibrium model, output supply-factor markets linkages, effects of cooking oil subsidy removals.


2008 ◽  
Vol 4 (4) ◽  
pp. 318-323 ◽  
Author(s):  
Hirotsugu KAMAHARA ◽  
Shun YAMAGUCHI ◽  
Ryuichi TACHIBANA ◽  
Naohiro GOTO ◽  
Koichi FUJIE

2010 ◽  
Vol 40 (3) ◽  
pp. 749-762
Author(s):  
Hirokazu GOTO ◽  
Yuichi HATAYA ◽  
Yasuyuki YOKOTA ◽  
Takeshi MIZUNOYA ◽  
Yoshiro HIGANO

Author(s):  
Charishma Venkata Sai Anne ◽  
Karthikeyan S. ◽  
Arun C.

Background: Waste biomass derived reusable heterogeneous acid based catalysts are more suitable to overcome the problems associated with homogeneous catalysts. The use of agricultural biomass as catalyst for transesterification process is more economical and it reduces the overall production cost of biodiesel. The identification of an appropriate suitable catalyst for effective transesterification will be a landmark in biofuel sector Objective: In the present investigation, waste wood biomass was used to prepare a low cost sulfonated solid acid catalyst for the production of biodiesel using waste cooking oil. Methods: The pretreated wood biomass was first calcined then sulfonated with H2SO4. The catalyst was characterized by various analyses such as, Fourier-transform infrared spectroscopy (FTIR), Scanning Electron Microscopy (SEM), Energy Dispersive X-Ray Spectroscopy (EDS) and X-ray diffraction (XRD). The central composite design (CCD) based response surface methodology (RSM) was applied to study the influence of individual process variables such as temperature, catalyst load, methanol to oil molar ration and reaction time on biodiesel yield. Results: The obtained optimized conditions are as follows: temperature (165 ˚C), catalyst loading (1.625 wt%), methanol to oil molar ratio (15:1) and reaction time (143 min) with a maximum biodiesel yield of 95 %. The Gas chromatographymass spectrometry (GC-MS) analysis of biodiesel produced from waste cooking oil was showed that it has a mixture of both monounsaturated and saturated methyl esters. Conclusion: Thus the waste wood biomass derived heterogeneous catalyst for the transesterification process of waste cooking oil can be applied for sustainable biodiesel production by adding an additional value for the waste materials and also eliminating the disposable problem of waste oils.


2014 ◽  
Vol 3 (10) ◽  
pp. 3419
Author(s):  
Mohan Reddy Nalabolu* ◽  
Varaprasad Bobbarala ◽  
Mahesh Kandula

At the present moment worldwide waning fossil fuel resources as well as the tendency for developing new renewable biofuels have shifted the interest of the society towards finding novel alternative fuel sources. Biofuels have been put forward as one of a range of alternatives with lower emissions and a higher degree of fuel security and gives potential opportunities for rural and regional communities. Biodiesel has a great potential as an alternative diesel fuel. In this work, biodiesel was prepared from waste cooking oil it was converted into biodiesel through single step transesterification. Methanol with Potassium hydroxide as a catalyst was used for the transesterification process. The biodiesel was characterized by its fuel properties including acid value, cloud and pour points, water content, sediments, oxidation stability, carbon residue, flash point, kinematic viscosity, density according to IS: 15607-05 standards. The viscosity of the waste cooking oil biodiesel was found to be 4.05 mm2/sec at 400C. Flash point was found to be 1280C, water and sediment was 236mg/kg, 0 % respectively, carbon residue was 0.017%, total acid value was 0.2 mgKOH/g, cloud point was 40C and pour point was 120C. The results showed that one step transesterification was better and resulted in higher yield and better fuel properties. The research demonstrated that biodiesel obtained under optimum conditions from waste cooking oil was of good quality and could be used as a diesel fuel.


Author(s):  
Yang Li ◽  
Zhenzhen Cheng ◽  
Chunlei Zhao ◽  
Cong Gao ◽  
Wei Song ◽  
...  

2021 ◽  
Vol 170 ◽  
pp. 302-314
Author(s):  
Adeyinka S. Yusuff ◽  
Aman K. Bhonsle ◽  
Jayati Trivedi ◽  
Dinesh P. Bangwal ◽  
Lok P. Singh ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document