scholarly journals Response of seed·propagated geranium (Pelargonium x hortorum L. H. Bailey) to application of flurprimidol

2013 ◽  
Vol 53 (1) ◽  
pp. 31-38 ◽  
Author(s):  
Anna Pobudkiewicz

In 1998 and 1999 flurprimidol spray applications to seed-propagated geranium (<em>Pelargonium x hortorum</em> L.H.Bailey) cultivars were made to evaluate efficacy and identify optimum concentration of flurprimidol. Growth retardant was applied as a single spray at O, 7,5, 15 and 22,5 mg L<sup>-1</sup>, when plants were 9-13 cm in height. The response of plants to flurprimidol application varied depending on geranium cultivar. At the time of flowering the plants sprayed with flurprimidol at concentrations of 7,5, 15 and 22,5 mg L<sup>-1</sup> were significantly shorter than the untreated ones. The plant diameter, floret diameter, floret peduncle length and inflorescence diameter of geranium treated with flurprimidol were significantly smaller than those of the control plants. Flurprimidol hastened flowering of geranium cultivars 'Suzan Improved', 'Pinto Salmon' and 'Ringo 2000 Violet' by 5-8 days in 1999 but had no significant effect on days to flowering in 1998. The chemical name used: a-(1-methylethyl)-a-[4-(trifluoromethyloxy)-phenyl]-5-pyrimidine-methanol (flurprimidol).

2017 ◽  
Vol 4 (4) ◽  
pp. 529-536
Author(s):  
Deepak Vitrakoti ◽  
Sheetal Aryal ◽  
Santosh Rasaily ◽  
Bishnu Raj Ojha ◽  
Raju Kharel ◽  
...  

Barley, being a tremendous opportunities crop, we are far back regarding study, research and utilization. An experiment was conducted 2014-2015 to evaluate the barley genotypes for their yield attributing traits and correlation and causation. Eleven yield contributing traits viz., days to booting, heading and flowering; peduncle length, spike length, plant height, flag leaf area, flag leaf-1 area, thousand grain weight, biological weight and yield per hectare were recorded. High significant variation among genotypes was found for traits under study. Genotypes SBYT3-13#1115 (1960 kg), 14-SB-NAK-MR#17 (1760 kg) and AM POP#26 (1660 kg) were found to be superior for their per se performance based on grain yield per hectare, yield attributing and other quantitative traits. Thousand grains weight (0.333) had positively highest significant correlation with grain yield per hectare followed by spike length (0.310). Grain yield per hectare showed negative highly significant correlation with days to flowering (-0.796) followed by days to heading (-0.761) and days to booting (-0.663). Peduncle length (0.229), plant height (0.226), biological weight (0.181) and flag leaf area (0.032) were positively correlated with grain yield per hectare while flag leaf-1 area(-0.029) was negatively correlated. Thus, selection for genotypes with higher thousand grain weight and spike length accommodating earlier days to flowering, heading and booting is a prerequisite for attaining improvement in grain yield per hectare.Int J Appl Sci Biotechnol, Vol 4(4): 529-536


2011 ◽  
Vol 50 (No. 9) ◽  
pp. 409-415 ◽  
Author(s):  
R. Singh ◽  
R.K. Behl ◽  
K.P. Singh ◽  
P. Jain ◽  
N. Narula

The present investigation was conducted to know the impact of bio-inoculants in low input field conditions on the magnitude and direction of gene effects and mean performance of some morphological and productivity traits in three wheat cultivars WH 147 (medium mineral input), WH 533 (drought tolerant), Raj 3077 (drought tolerant) and six generations namely P<sub>1</sub>, P<sub>2</sub>, F<sub>1</sub>, F<sub>2</sub>, BC<sub>1</sub> and BC<sub>2</sub> of three crosses i.e. WH 147 &times; WH 533, WH 533 &times; Raj 3077 and WH&nbsp;147 &times; Raj 3077. The experiment was conducted in randomised block design with three replications and three treatments i.e. control (C, without inoculation), inoculation with arbuscular mycorrhiza fungi (AMF, Glomus fasciculatum), and AMF + Azotobacter chroococcum (Azc). Mineral fertilizer (80 kg N/ha + 40 kg P/ha + 18 kg ZnSO<sub>4</sub>/ha) was applied in all the three treatments. The application of bio-inoculants, AMF and AMF + Azc had a positive effect on plant height, peduncle length, grain yield, biological yield and harvest index in various populations of all the crosses. However, in some of the generations the impact of bio-inoculants was insignificant. The joint scaling test revealed that additive-dominance gene effects were mainly operative in governing expression of peduncle length, tillers per plant, plant height, grains/spike, grain yield and all traits except days to flowering and harvest index in crosses WH&nbsp;147 &times; WH 533 and WH 533 &times; Raj 3077. The application of bioinoculants influenced gene effects for days to flowering, days to maturity, flag leaf area, spike length, grains/spike, 1000 grain weight and harvest index where complex genetic interactions were changed to simple additive-dominance gene effects in the cross WH 147 &times; Raj 3077. Likewise, additive-dominance gene effects were altered and digenic interactions exhibited for days to maturity, flag leaf area in WH&nbsp;147 &times; WH 533 and days to flowering, plant height, flag leaf area in WH 533 &times; Raj 3077. Flag leaf area and plant height were governed by additive gene effects while for days to maturity and 1000-grain weight both additive and dominance gene effect were important. Duplicate epistasis was important in all the three crosses for days to flowering and harvest index and in the cross WH 147 &times; Raj 3077 for grain weight grains per spike and flag leaf area. &nbsp;


HortScience ◽  
1990 ◽  
Vol 25 (9) ◽  
pp. 1081G-1081
Author(s):  
Jing-fen Chen ◽  
Paul H. Li ◽  
David W. Davis

Exposure of young pepper plants to chilling temperatures delays the development of terminal flower buds to flowering during post-stress growth. Degree of adverse influence depends on chilling intensity, exposure duration and varietal sensitivity. `Ma Belle' pepper plants were grown in a greenhouse (GH) during winter months on the St. Paul campus, No supplemental lighting was provided. When plants were at the 2- to 3-leaf stage, they were foliar sprayed with mefluidide (Technical grade) at 0, 5, 10 and 15 ppm. One day after treatment, some plants were transferred from GH to a cold room (3° ∼4°C day/night) with 12-h photoperiod. Treatad plants remaining in the GH served as the control. Plants were chilled for 1, 2, 4 and 6 days and then brought back to the GH for post-stress growth and development observation. Treated and untreated plants grown in the GH showed no difference in days to flowering, and reached 50% flowering at about 62 days after treatment. When untreated plants were chilled for 1,2,4 and 6 days, they showed a delay of 8, 18, 30 and 34 days, respectively, to flowering, If not killed, as compared to the control The long delay to flowering was due to the injury of the terminal flower buds. After 4 and 6 days of chilling, most terminal flower buds were killed. However, when plants were treated with mefluidide and subsequently chilled days to flowering were significantly shortened. A difference of 10-12 days was observed between chilled untreated plants and chilled treated plants. Concentrations of 5 to 15 ppm were equally effective in protection against chilling.


2018 ◽  
Vol 19 (1) ◽  
pp. 65-73 ◽  
Author(s):  
Marzieh Ghanemi ◽  
Aminollah Pourshohod ◽  
Mohammad Ali Ghaffari ◽  
Alireza kheirollah ◽  
Mansour Amin ◽  
...  

Background:Expression of human epidermal growth factor receptor type 2 (HER2) in head and neck squamous cell carcinoma (HNSCC) cell line HN5 can be employed with great opportunities of success for specific targeting of anti-cancer chemotherapeutic agents.Objective:In the current study, HER2-specific affibody molecule, ZHER2:342 (an engineered protein with great affinity for HER2 receptors) was selected for conjugation to idarubicin (an anti-neoplastic antibiotic).Method:ZHER2:342 affibody gene with one added cysteine code at the its 5′ end was synthesized de novo and then inserted into pET302 plasmid and transferred to E. Coli BL21 hosting system. After induction of protein expression, the recombinant ZHER2 affibody molecules were purified using Ni- NTA resin and purity was analyzed through SDS-PAGE. Affinity-purified affibody molecules were conjugated to idarubicin through a heterobifunctional crosslinker, sulfosuccinimidyl 4-(Nmaleimidomethyl) cyclohexane-1-carboxylate (Sulfo-SMCC). Specific toxicity of idarubicin-ZHER2 affibody conjugate against two HER2-positive cells, HN5 and MCF-7 was assessed through MTT assay after an exposure time of 48 hours with different concentrations of conjugate.Results:Idarubicin in the non-conjugated form showed potent toxic effects against both cell lines, while HN5 cells were significantly more sensitive compared to MCF-7 cells. Dimeric ZHER2 affibody showed a mild decreasing effect on growth of both HN5 and MCF-7 cells at optimum concentration. Idarubicin-ZHER2 affibody conjugate at an optimum concentration reduced viability of HN5 cell line more efficiently compared to MCF-7 cell line.In conclusion, idarubicin-ZHER2 affibody conjugate in optimum concentrations can be used for specific targeting and killing of HN5 cells.


1998 ◽  
Vol 26 (5) ◽  
pp. 679-708 ◽  
Author(s):  
Horst Spielmann ◽  
Michael Balls ◽  
Jack Dupuis ◽  
Wolfgang J. W. Pape ◽  
Odile de Silva ◽  
...  

In 1996, the Scientific Committee on Cosmetology of DGXXIV of the European Commission asked the European Centre for the Validation of Alternative Methods to test eight UV filter chemicals from the 1995 edition of Annex VII of Directive 76/768/EEC in a blind trial in the in vitro 3T3 cell neutral red uptake phototoxicity (3T3 NRU PT) test, which had been scientifically validated between 1992 and 1996. Since all the UV filter chemicals on the positive list of EU Directive 76/768/EEC have been shown not to be phototoxic in vivo in humans under use conditions, only negative effects would be expected in the 3T3 NRU PT test. To balance the number of positive and negative chemicals, ten phototoxic and ten non-phototoxic chemicals were tested under blind conditions in four laboratories. Moreover, to assess the optimum concentration range for testing, information was provided on appropriate solvents and on the solubility of the coded chemicals. In this study, the phototoxic potential of test chemicals was evaluated in a prediction model in which either the Photoirritation Factor (PIF) or the Mean Photo Effect (MPE) were determined. The results obtained with both PIF and MPE were highly reproducible in the four laboratories, and the correlation between in vitro and in vivo data was almost perfect. All the phototoxic test chemicals provided a positive result at concentrations of 1μg/ml, while nine of the ten non-phototoxic chemicals gave clear negative results, even at the highest test concentrations. One of the UV filter chemicals gave positive results in three of the four laboratories only at concentrations greater than 100μg/ml; the other laboratory correctly identified all 20 of the test chemicals. An analysis of the impact that exposure concentrations had on the performance of the test revealed that the optimum concentration range in the 3T3 NRU PT test for determining the phototoxic potential of chemicals is between 0.1μg/ml and 10μg/ml, and that false positive results can be obtained at concentrations greater than 100μg/ml. Therefore, the positive results obtained with some of the UV filter chemicals only at concentrations greater than 100μg/ml do not indicate a phototoxic potential in vivo. When this information was taken into account during calculation of the overall predictivity of the 3T3 NRU PT test in the present study, an almost perfect correlation of in vitro versus in vivo results was obtained (between 95% and 100%), when either PIF or MPE were used to predict the phototoxic potential. The management team and participants therefore conclude that the 3T3 NRU PT test is a valid test for correctly assessing the phototoxic potential of UV filter chemicals, if the defined concentration limits are taken into account.


Author(s):  
Stefan Hahn ◽  
Jessica Meyer ◽  
Michael Roitzsch ◽  
Christiaan Delmaar ◽  
Wolfgang Koch ◽  
...  

Spray applications enable a uniform distribution of substances on surfaces in a highly efficient manner, and thus can be found at workplaces as well as in consumer environments. A systematic literature review on modelling exposure by spraying activities has been conducted and status and further needs have been discussed with experts at a symposium. This review summarizes the current knowledge about models and their level of conservatism and accuracy. We found that extraction of relevant information on model performance for spraying from published studies and interpretation of model accuracy proved to be challenging, as the studies often accounted for only a small part of potential spray applications. To achieve a better quality of exposure estimates in the future, more systematic evaluation of models is beneficial, taking into account a representative variety of spray equipment and application patterns. Model predictions could be improved by more accurate consideration of variation in spray equipment. Inter-model harmonization with regard to spray input parameters and appropriate grouping of spray exposure situations is recommended. From a user perspective, a platform or database with information on different spraying equipment and techniques and agreed standard parameters for specific spraying scenarios from different regulations may be useful.


Sign in / Sign up

Export Citation Format

Share Document