Impact of revised definitions for extensively drug-resistant TB on disease classification

2021 ◽  
Vol 25 (9) ◽  
pp. 766-768
Author(s):  
J. E. Shin ◽  
K-W. Jo ◽  
Y. J. O ◽  
D. Jeon ◽  
H. Kang ◽  
...  
Author(s):  
Elham Abbasi ◽  
Hossein Goudarzi ◽  
Ali Hashemi ◽  
Alireza Salimi Chirani ◽  
Abdollah Ardebili ◽  
...  

AbstractA major challenge in the treatment of infections has been the rise of extensively drug resistance (XDR) and multidrug resistance (MDR) in Acinetobacter baumannii. The goals of this study were to determine the pattern of antimicrobial susceptibility, blaOXA and carO genes among burn-isolated A. baumannii strains. In this study, 100 A. baumannii strains were isolated from burn patients and their susceptibilities to different antibiotics were determined using disc diffusion testing and broth microdilution. Presence of carO gene and OXA-type carbapenemase genes was tested by PCR and sequencing. SDS-PAGE was done to survey CarO porin and the expression level of carO gene was evaluated by Real-Time PCR. A high rate of resistance to meropenem (98%), imipenem (98%) and doripenem (98%) was detected. All tested A. baumannii strains were susceptible to colistin. The results indicated that 84.9% were XDR and 97.9% of strains were MDR. In addition, all strains bore blaOXA-51 like and blaOXA-23 like and carO genes. Nonetheless, blaOXA-58 like and blaOXA-24 like genes were harbored by 0 percent and 76 percent of strains, respectively. The relative expression levels of the carO gene ranged from 0.06 to 35.01 fold lower than that of carbapenem-susceptible A. baumannii ATCC19606 and SDS – PAGE analysis of the outer membrane protein showed that all 100 isolates produced CarO. The results of current study revealed prevalence of blaOXA genes and changes in carO gene expression in carbapenem resistant A.baumannii.


2019 ◽  
Vol 70 (11) ◽  
pp. 2396-2402
Author(s):  
Kristin N Nelson ◽  
Samuel M Jenness ◽  
Barun Mathema ◽  
Benjamin A Lopman ◽  
Sara C Auld ◽  
...  

Abstract Background Tuberculosis (TB) is the leading infectious cause of death globally, and drug-resistant TB strains pose a serious threat to controlling the global TB epidemic. The clinical features, locations, and social factors driving transmission in settings with high incidences of drug-resistant TB are poorly understood. Methods We measured a network of genomic links using Mycobacterium tuberculosis whole-genome sequences. Results Patients with 2–3 months of cough or who spent time in urban locations were more likely to be linked in the network, while patients with sputum smear–positive disease were less likely to be linked than those with smear-negative disease. Associations persisted using different thresholds to define genomic links and irrespective of assumptions about the direction of transmission. Conclusions Identifying factors that lead to many transmissions, including contact with urban areas, can suggest settings instrumental in transmission and indicate optimal locations and groups to target with interventions.


Sign in / Sign up

Export Citation Format

Share Document