Interpretation of forest disturbance using a time series of Landsat imagery and canopy structure from airborne lidar

2014 ◽  
Vol 39 (6) ◽  
pp. 521-542 ◽  
Author(s):  
Oumer S. Ahmed ◽  
Steven E. Franklin ◽  
Michael A. Wulder
2017 ◽  
Vol 47 (3) ◽  
pp. 289-296 ◽  
Author(s):  
Katsuto Shimizu ◽  
Raul Ponce-Hernandez ◽  
Oumer S. Ahmed ◽  
Tetsuji Ota ◽  
Zar Chi Win ◽  
...  

Detecting forest disturbances is an important task in formulating mitigation strategies for deforestation and forest degradation in the tropics. Our study investigated the use of Landsat time series imagery combined with a trajectory-based analysis for detecting forest disturbances resulting exclusively from selective logging in Myanmar. Selective logging was the only forest disturbance and degradation indicator used in this study as a causative force, and the results showed that the overall accuracy for forest disturbance detection based on selective logging was 83.0% in the study area. The areas affected by selective logging and other factors accounted for 4.7% and 5.4%, respectively, of the study area from 2000 to 2014. The detected disturbance areas were underestimated according to error assessments; however, a significant correlation between areas of disturbance and numbers of harvested trees during the logging year was observed, indicating the utility of a trajectory-based, annual Landsat imagery time series analysis for selective logging detection in the tropics. A major constraint of this study was the lack of available data for disturbances other than selective logging. Further studies should focus on identifying other types of disturbances and their impacts on future forest conditions.


2020 ◽  
Vol 12 (11) ◽  
pp. 1876 ◽  
Author(s):  
Katsuto Shimizu ◽  
Tetsuji Ota ◽  
Nobuya Mizoue ◽  
Hideki Saito

Developing accurate methods for estimating forest structures is essential for efficient forest management. The high spatial and temporal resolution data acquired by CubeSat satellites have desirable characteristics for mapping large-scale forest structural attributes. However, most studies have used a median composite or single image for analyses. The multi-temporal use of CubeSat data may improve prediction accuracy. This study evaluates the capabilities of PlanetScope CubeSat data to estimate canopy height derived from airborne Light Detection and Ranging (LiDAR) by comparing estimates using Sentinel-2 and Landsat 8 data. Random forest (RF) models using a single composite, multi-seasonal composites, and time-series data were investigated at different spatial resolutions of 3, 10, 20, and 30 m. The highest prediction accuracy was obtained by the PlanetScope multi-seasonal composites at 3 m (relative root mean squared error: 51.3%) and Sentinel-2 multi-seasonal composites at the other spatial resolutions (40.5%, 35.2%, and 34.2% for 10, 20, and 30 m, respectively). The results show that RF models using multi-seasonal composites are 1.4% more accurate than those using harmonic metrics from time-series data in the median. PlanetScope is recommended for canopy height mapping at finer spatial resolutions. However, the unique characteristics of PlanetScope data in a spatial and temporal context should be further investigated for operational forest monitoring.


Author(s):  
Jing Li ◽  
Carl E. Zipper ◽  
Patricia F. Donovan ◽  
Randolph H. Wynne ◽  
Adam J. Oliphant

Forests ◽  
2017 ◽  
Vol 8 (7) ◽  
pp. 251 ◽  
Author(s):  
Julian Oeser ◽  
Dirk Pflugmacher ◽  
Cornelius Senf ◽  
Marco Heurich ◽  
Patrick Hostert

2020 ◽  
Author(s):  
Markus Löw ◽  
Koukal Tatjana

Abstract Background Worldwide, forests provide natural resources and ecosystem services. However, forest ecosystems are threatened by increasing forest disturbance dynamics, caused by direct human activities or an altering natural environment. It is decisive to trace the intra- to trans-annual dynamics of these forest ecosystems. National to local forest communities request detailed area-wide maps that delineate forest disturbance dynamics at various spatial scales. Methods We developed a remote sensing based time series analysis (TSA) framework that comprises data access, data management, image pre-processing, and an advanced but flexible TSA. The data basis is a dense time series of multispectral Sentinel-2 images with a spatial resolution of 10 metres. We use a dynamic Savitzky-Golay-filtering approach to reconstruct robust but sensitive phenology courses. Deviations from the latter are further used to derive spatiotemporal information on forest disturbances. In a first case study, we apply the TSA to map forest disturbances directly or indirectly linked to recurring bark beetle infestation in Northern Austria. Finally, we use zonal statistics on different spatial scales to provide aggregated information on the extent of forest disturbances between 2018 and 2019.Results and Conclusion The outcomes are a) individual phenology models and deduced phenology metrics for each 10 metres by 10 metres forest pixel in Austria and b) forest disturbance maps useful to investigate the occurrence, development and extent of bark beetle infestation. The phenology modelling results provide area-wide consistent data, also useful for downstream analyses (e.g. forest type classification). Results of the forest disturbance detection demonstrate that the TSA is capable to systematically delineate disturbed forest areas. Information derived from such a forest monitoring tool is highly relevant for various stakeholders in the forestry sector, either for forest management purposes or for decision-making processes on different levels.


2020 ◽  
Vol 12 (19) ◽  
pp. 3120
Author(s):  
Luojia Hu ◽  
Nan Xu ◽  
Jian Liang ◽  
Zhichao Li ◽  
Luzhen Chen ◽  
...  

A high resolution mangrove map (e.g., 10-m), including mangrove patches with small size, is urgently needed for mangrove protection and ecosystem function estimation, because more small mangrove patches have disappeared with influence of human disturbance and sea-level rise. However, recent national-scale mangrove forest maps are mainly derived from 30-m Landsat imagery, and their spatial resolution is relatively coarse to accurately characterize the extent of mangroves, especially those with small size. Now, Sentinel imagery with 10-m resolution provides an opportunity for generating high-resolution mangrove maps containing these small mangrove patches. Here, we used spectral/backscatter-temporal variability metrics (quantiles) derived from Sentinel-1 SAR (Synthetic Aperture Radar) and/or Sentinel-2 MSI (Multispectral Instrument) time-series imagery as input features of random forest to classify mangroves in China. We found that Sentinel-2 (F1-Score of 0.895) is more effective than Sentinel-1 (F1-score of 0.88) in mangrove extraction, and a combination of SAR and MSI imagery can get the best accuracy (F1-score of 0.94). The 10-m mangrove map was derived by combining SAR and MSI data, which identified 20003 ha mangroves in China, and the area of small mangrove patches (<1 ha) is 1741 ha, occupying 8.7% of the whole mangrove area. At the province level, Guangdong has the largest area (819 ha) of small mangrove patches, and in Fujian, the percentage of small mangrove patches is the highest (11.4%). A comparison with existing 30-m mangrove products showed noticeable disagreement, indicating the necessity for generating mangrove extent product with 10-m resolution. This study demonstrates the significant potential of using Sentinel-1 and Sentinel-2 images to produce an accurate and high-resolution mangrove forest map with Google Earth Engine (GEE). The mangrove forest map is expected to provide critical information to conservation managers, scientists, and other stakeholders in monitoring the dynamics of the mangrove forest.


2020 ◽  
Vol 12 (18) ◽  
pp. 3038
Author(s):  
Dhahi Al-Shammari ◽  
Ignacio Fuentes ◽  
Brett M. Whelan ◽  
Patrick Filippi ◽  
Thomas F. A. Bishop

A phenology-based crop type mapping approach was carried out to map cotton fields throughout the cotton-growing areas of eastern Australia. The workflow was implemented in the Google Earth Engine (GEE) platform, as it is time efficient and does not require processing in multiple platforms to complete the classification steps. A time series of Normalised Difference Vegetation Index (NDVI) imagery were generated from Landsat 8 Surface Reflectance Tier 1 (L8SR) and processed using Fourier transformation. This was used to produce the harmonised-NDVI (H-NDVI) from the original NDVI, and then phase and amplitude values were generated from the H-NDVI to visualise active cotton in the targeted fields. Random Forest (RF) models were built to classify cotton at early, mid and late growth stages to assess the ability of the model to classify cotton as the season progresses, with phase, amplitude and other individual bands as predictors. Results obtained from leave-one-season-out cross validation (LOSOCV) indicated that Overall Accuracy (OA), Kappa, Producer’s Accuracies (PA) and User’s Accuracy (UA), increased significantly when adding amplitude and phase as predictor variables to the model, than prediction using H-NDVI or raw bands only. Commission and omission errors were reduced significantly as the season progressed and more in-season imagery was available. The methodology proposed in this study can map cotton crops accurately based on the reconstruction of the unique cotton reflectance trajectory through time. This study confirms the importance of phenological metrics in improving in-season cotton fields mapping across eastern Australia. This model can be used in conjunction with other datasets to forecast yield based on the mapped crop type for improved decision making related to supply chain logistics and seasonal outlooks for production.


Sign in / Sign up

Export Citation Format

Share Document