Thermal conductivity coefficient of a traditional earth house from eastern Croatia: a case study

2021 ◽  
Author(s):  
Ana Perić ◽  
Ivan Kraus ◽  
Hrvoje Krstić
Author(s):  
Ahmed E Aboueregal ◽  
Hamid M Sedighi

The present contribution aims to address a problem of thermoviscoelasticity for the analysis of the transition temperature and thermal stresses in an infinitely circular annular cylinder. The inner surface is traction-free and subjected to thermal shock heating, while the outer surface is thermally insulated and free of traction. In this work, in contrast to the various problems in which the thermal conductivity coefficient is considered to be fixed, this parameter is assumed to be variable depending on the temperature change. The problem is studied by presenting a new generalized thermoelastic model of thermal conductivity described by the Moore–Gibson–Thompson equation. The new model can be constructed by incorporating the relaxation time thermal model with the Green–Naghdi type III model. The Laplace transformation technique is used to obtain the exact expressions for the radial displacement, temperature and the distributions of thermal stresses. The effects of angular velocity, viscous parameter, and variance in thermal properties are also displayed to explain the comparisons of the physical fields.


2021 ◽  
pp. jgs2020-174
Author(s):  
Martha E. Gibson ◽  
David J. Bodman

Evaporites characterize the Lopingian of Europe but present obstacles for biostratigraphic analysis. Here we present a case study for processing the Lopingian Zechstein Group evaporites of central-western Europe for the recovery of palynomorph assemblages. We demonstrate that full recovery is easily achieved with two main modes of palynomorph preservation observed; palynomorphs are either exceptionally well-preserved and orange-brown in colour, or poorly-preserved, brown-black, opaque and fragmented. The latter are reminiscent of palynomorphs of high thermal maturity. However, we propose that the intact nature of preservation is a result of the rapid growth of near-surface halite crystals, with their darkening a consequence of locally-enhanced heat flux due to the relatively high thermal conductivity of salt. This case study has enabled novel insight into an otherwise undescribed environment, and demonstrates the utility and possibility of extracting palynomorphs from a variety of rock salt types. This method should be applicable to a wide range of ancient evaporite and could also be applied to other Permian evaporite systems, which are used as analogues for extra-terrestrial environments.


2020 ◽  
Vol 12 (1) ◽  
pp. 5-11
Author(s):  
MARCIN KUPIŃSKI ◽  
KAROLINA STOBIENIECKA ◽  
KAROL SKOWERA

Lightweight fillers are used in dry-mixed building mortars in order to improve thermal insulation properties, yield, and workability. In the case of thin layer products, used as a finishing layer, reduced thermal conductivity coefficient enables to restrain of water vapor condensation on walls – which inhibits mold growth. The aim of the study was to determine the influence of 4 types of lightweight fillers on the performance of cement-based skim coat – with emphasis on the economic aspect. Formulas reflecting typical commercial products were used. The dosage of different components -such as expanded perlite, glass and polymeric bubbles or expanded glass – was optimized for sufficient yield and workability, keeping the constant price of 1 kg of the final product. Mechanical parameters, capillary absorption coefficient, and thermal conductivity coefficient were determined. Observations by Scanning Electron Microscope revealed poor incorporation of polymer microspheres in the cement matrix, leading to loss of mechanical strength. With the addition of expanded glass, an increase of flexural and compressive strength thanks to the pozzolanic reaction was observed. Glass bubbles were found the most effective additive.


2015 ◽  
Vol 19 (4) ◽  
pp. 1369-1372 ◽  
Author(s):  
Zhe Zhao ◽  
Hai-Ming Huang ◽  
Qing Wang ◽  
Song Ji

To explore whether pressure and temperature can affect thermal contact resistance, we have proposed a new experimental approach for measurement of the thermal contact resistance. Taking the thermal contact resistance between phenolic resin and carbon-carbon composites, cuprum, and aluminum as the examples, the influence of the thermal contact resistance between specimens under pressure is tested by experiment. Two groups of experiments are performed and then an analysis on influencing factors of the thermal contact resistance is presented in this paper. The experimental results reveal that the thermal contact resistance depends not only on the thermal conductivity coefficient of materials, but on the interfacial temperature and pressure. Furthermore, the thermal contact resistance between cuprum and aluminum is more sensitive to pressure and temperature than that between phenolic resin and carbon-carbon composites.


One of the main successes of the kinetic theory of gases is the explicit calculation of the transport coefficients of rarefied gases. However, the greatest problems arise when calculating the thermal conductivity coefficient, especially for polyatomic gases. Also, when using different potentials, it is necessary to systematically calculate the so-called Ω-integrals, which in itself is a rather difficult task. For this reason, direct numerical molecular modeling of the processes of transfer of rarefied gases, in particular, the calculation of their transfer coefficients, is also relevant. A well-known method for such modeling is the molecular dynamics method. Unfortunately, until now this method is not available for modeling the processes of rarefied gas transfer. Under nor-mal conditions, the simulation cell should contain tens or even hundreds of millions of molecules during calculations. At the same time, the numerical implementation of the molecular dynamics method is accompanied by a systematic appearance of errors, which is the reason for the appearance of dynamic chaos. With this simulation, the true phase trajectories of the system under consideration cannot be obtained. Therefore, naturally, the idea of developing a method for modeling transport processes arises, in which phase trajectories are not calculated based on Newton's laws, but are simulated, and then are used to calculate any observables. In our works, we developed a method of stochastic molecular modeling (STM) of rarefied gas transfer processes, where this idea was implemented. The efficiency of the SMM method was demonstrated by calculating the coefficients of self-diffusion, diffusion, and viscosity of both monoatomic gases and polyatomic gases. At the same time, the possibility of modeling the most complex transfer process – the energy transfer process – has not yet been considered. This work aims to simulate the thermal conductivity coefficient by the SMM method. Both monoatomic (Ar, Kr, Ne, Xe) and polyatomic gases (CH4, O2) were considered.


Sign in / Sign up

Export Citation Format

Share Document