scholarly journals Exploring biodegradable polymer production from marine microbes

Author(s):  
Kulanthaisamy Mohan Rasu ◽  
Alagarsamy Arun
2015 ◽  
Vol 5 (3) ◽  
pp. 206-218 ◽  
Author(s):  
Sarvesh S. Rangnekar ◽  
Tabassum Khan

2020 ◽  
Vol 67 (2) ◽  
pp. 115-120
Author(s):  
Raisa A. Alekhina ◽  
Victoriya E. Slavkina ◽  
Yuliya A. Lopatina

The article presents options for recycling polymers. The use of biodegradable materials is promising. This is a special class of polymers that can decompose under aerobic or anaerobic conditions under the action of microorganisms or enzymes forming natural products such as carbon dioxide, nitrogen, water, biomass, and inorganic salts. (Research purpose) The research purpose is in reviewing biodegradable materials that can be used for the manufacture of products used in agriculture. (Materials and methods) The study are based on open information sources containing information about biodegradable materials. Research methods are collecting, studying and comparative analysis of information. (Results and discussion) The article presents the advantages and disadvantages of biodegradable materials, mechanical properties of the main groups of biodegradable polymers. The article provides a summary list of agricultural products that can be made from biodegradable polymer materials. It was found that products from the general group are widely used in agriculture. Authors have found that products from a special group can only be made from biodegradable polymers with a controlled decomposition period in the soil, their use contributes to increasing the productivity of crops. (Conclusions) It was found that biodegradable polymer materials, along with environmental safety, have mechanical properties that allow them producing products that do not carry significant loads during operation. We have shown that the creation of responsible products (machine parts) from biodegradable polymers requires an increase in their strength properties, which is achievable by creating composites based on them. It was found that the technological complexity of their manufacture and high cost are the limiting factors for the widespread use of biodegradable polymers at this stage.


Gels ◽  
2021 ◽  
Vol 7 (3) ◽  
pp. 83
Author(s):  
Peter H. Santschi ◽  
Wei-Chun Chin ◽  
Antonietta Quigg ◽  
Chen Xu ◽  
Manoj Kamalanathan ◽  
...  

Microgels play critical roles in a variety of processes in the ocean, including element cycling, particle interactions, microbial ecology, food web dynamics, air–sea exchange, and pollutant distribution and transport. Exopolymeric substances (EPS) from various marine microbes are one of the major sources for marine microgels. Due to their amphiphilic nature, many types of pollutants, especially hydrophobic ones, have been found to preferentially associate with marine microgels. The interactions between pollutants and microgels can significantly impact the transport, sedimentation, distribution, and the ultimate fate of these pollutants in the ocean. This review on marine gels focuses on the discussion of the interactions between gel-forming EPS and pollutants, such as oil and other hydrophobic pollutants, nanoparticles, and metal ions.


Macromol ◽  
2021 ◽  
Vol 1 (3) ◽  
pp. 201-233
Author(s):  
Nina Maria Ainali ◽  
Dimitrios Kalaronis ◽  
Eleni Evgenidou ◽  
Dimitrios N. Bikiaris ◽  
Dimitra A. Lambropoulou

During the past two decades, immobilization of titanium dioxide (TiO2), a well-known photocatalyst, on several polymeric substrates has extensively gained ground since it limits the need of post-treatment separation stages. Taking into account the numerous substrates tested for supporting TiO2 photocatalysts, the use of biodegradable polymer seems a hopeful option owing to its considerable merits, including the flexible nature, low price, chemical inertness, mechanical stability and wide feasibility. The present review places its emphasis on recently published research articles (2011–2021) and exhibits the most innovative studies facilitating the eco-friendly biodegradable polymers to fabricate polymer-based photocatalysts, while the preparation details, photocatalytic performance and reuse of the TiO2/polymer photocatalysts is also debated. The biodegradable polymers examined herein comprise of chitosan (CS), cellulose, alginate, starch, poly(lactid acid) (PLA), polycaprolactone (PCL) and poly(lactide-co-glycolide) (PLGA), while an emphasis on the synthetical pathway (dip-coating, electrospinning, etc.) of the photocatalysts is provided.


Author(s):  
Craig J. Dedman ◽  
Aaron M. King ◽  
Joseph A. Christie-Oleza ◽  
Gemma-Louise Davies

Exposure of Prochlorococcus cultures to research-grade and extracted nano-sized TiO2 at environmentally-relevant and supra-environmental concentrations (1 μg L−1 to 100 mg L−1) results in initial cell decline, followed by full population recovery.


Sign in / Sign up

Export Citation Format

Share Document