scholarly journals Genetic background and diagnosis of Fanconi anemia

2020 ◽  
Vol 74 ◽  
pp. 589-600
Author(s):  
Anna Repczyńska ◽  
Olga Haus

Fanconi anemia (FA) is a rare genetic disease caused by mutations in genes whose protein products are involved in important cell processes such as replication, cell cycle control and repair of DNA damage. FA is characterized by congenital malformations, bone marrow failure and high risk of cancer. Phenotypic symptoms, present in about 75% of patients, most often include such abnormalities as short stature, microcephaly, thumb and radial side of the limb defects, abnormal skin pigmentation, gastrointestinal and genitourinary defects. Progressive bone marrow failure occurs in the first decade of life, often initially with leukopenia or thrombocytopenia. The most common cancers occurring in patients with FA are myelodysplastic syndromes and acute myeloid leukemia, as well as solid tumors of the head and neck, skin, gastrointestinal system and genitourinary system. So far, 22 genes of Fanconi anemia (FANC) have been identified, which are located on the autosomal chromosomes, except for FANCB, which is located on the X chromosome. Protein products of FANC genes are the elements of Fanconi anemia pathway, which regulates DNA damage repair systems. Genetic diagnostics of Fanconi anemia should start by testing crosslinking agents: mitomycin C (MMC) or diepoxybutane (DEB) assuring differential diagnosis of chromosome instability syndromes. In patients with Fanconi anemia, an increased number of chromosomal gaps and breaks as well as specific radial structures are observed. In order to detect a mutation underlying Fanconi anemia, molecular techniques should be used, preferentially next generation sequencing (NGS).

Blood ◽  
2003 ◽  
Vol 102 (6) ◽  
pp. 2081-2084 ◽  
Author(s):  
Xiaxin Li ◽  
P. Artur Plett ◽  
Yanzhu Yang ◽  
Ping Hong ◽  
Brian Freie ◽  
...  

Abstract The pathogenesis of bone marrow failure in Fanconi anemia is poorly understood. Suggested mechanisms include enhanced apoptosis secondary to DNA damage and altered inhibitory cytokine signaling. Recent data determined that disrupted cell cycle control of hematopoietic stem and/or progenitor cells disrupts normal hematopoiesis with increased hematopoietic stem cell cycling resulting in diminished function and increased sensitivity to cell cycle–specific apoptotic stimuli. Here, we used Fanconi anemia complementation type C–deficient (Fancc–/–) mice to demonstrate that Fancc–/– phenotypically defined cell populations enriched for hematopoietic stem and progenitor cells exhibit increased cycling. In addition, we established that the defect in cell cycle regulation is not a compensatory mechanism from enhanced apoptosis occurring in vivo. Collectively, these data provide a previously unrecognized phenotype in Fancc–/– hematopoietic stem/progenitor cells, which may contribute to the progressive bone marrow failure in Fanconi anemia.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 648-648
Author(s):  
Naoya Suzuki ◽  
Asuka Hira ◽  
Akira Niwa ◽  
Megumu Saito ◽  
Keitaro Matsuo ◽  
...  

Abstract Abstract 648 Introduction Fanconi anemia (FA) is a genome instability disorder with clinical characteristics including progressive bone marrow failure (BMF), developmental abnormalities, and increased occurrence of leukemia and cancer. To date 15 genes have been implicated in FA, and their products form a common DNA repair network often referred to as “FA pathway”. Following DNA damage or replication stress, the FA pathway is activated, leading to the monoubiquitination of FANCD2 and FANCI proteins (the ID complex). The monoubiquitinated ID complex is loaded on damaged chromatin with subnuclear foci formation, and mediates homologous recombination. Since cells derived from FA patients are hypersensitive to treatments that induce DNA interstrand cross-links (ICLs), the FA pathway has been considered to function in ICL repair. However, it still remains unclear what type of endogenous DNA damage is repaired through the FA pathway and is the cause of phenotypes in FA patients. Recent studies have suggested that cells deficient in the FA pathway are also sensitive to formaldehyde and acetaldehyde. Aldehydes may create DNA adducts including ICLs or protein DNA crosslinking. These results raise a possibility that the FA pathway prevents BMF by mitigating genotoxicity due to endogenous aldehydes. It has been known that ALDH2 deficiency resulting from Glu487Lys substitution (A allele) is prevalent in East Asian populations. While the Glu487 form (G allele) is proficient in aldehyde catabolism, even the GA heterozygote displayed strongly reduced catalysis because ALDH2 is a tetrameric enzyme and the variant form can suppress the activity in a dominant negative manner. Therefore some Japanese FA patients are expected to be deficient in ALDH2, providing an opportunity to test role of ALDH2 and aldehyde metabolism in human FA patients. Results and discussion In FA fetus, p53/p21 axis has already activated in fetal liver (Ceccaldi, Cell stem cell, 2012), indicating the possibility that hematopoietic defects in FA patients originates from an earlier developmental stage. Since human hematopoietic system originates from embryonic mesoderm, we set out to estimate the role of ALDH2 and FANCA pathway during early embryogenesis. For this, we reprogrammed somatic cells from a patient with ALDH2 GA genotype and observed their in vitro mesodermal differentiation. We first introduced reprogramming factors into fibroblasts by episomal vectors, and obtained colonies which are morphologically compatible with human induced pluripotent stem cells (iPSCs). These iPSC-like cells (designated as FA-iPLCs) showed close similarity to conventional ES/iPSCs regarding marker gene expressions and differentiation ability into three germ layers. We obtained gene-complemented FA-iPLCs (designated as cFA-iPLCs) for control study. To evaluate the impact of ALDH2 activity on iPSC- or iPLC-derived mesodermal differentiation, we next adapted the previously reported serum-free monolayer culture system. Both FA- and cFA-iPLCs showed similar differentiation manners with conventional embryonic stem cells and iPSCs, and percentages of KDR+ mesodermal progenitors including KDR+CD34+ common hemoangiogenic progenitors were comparable. Notably, ALDH2 agonist Alda1 did increase only FA-iPLC-derived mesodermal progenitors but not cFA-iPLCs. These data supported the hypothesis that mesodermal development towards hematopoietic cells in human can be affected by ALDH2 activity in the absence of FA pathway. To confirm the hypothesis, next we set out to assess whether the variation in ALDH2 affects symptoms in Japanese FA patients. Strikingly, we found that progression of BMF was strongly accelerated in heterozygous carrier of the variant A allele compared to homozygous GG patients. Furthermore we looked at occurrence of leukemia and/or myelodysplasia and the somatic developments. Interestingly, these were not significantly difference between patients with each variation of ALDH2, indicating the possibility that aldehydes affect only in early hematopoietic development, not other mesodermal tissues. Overall, our results from FA-iPLCs and clinical study indicate that the variation in ALDH2 affects the occurrence of bone marrow failure in FA patients, and that hematopoietic defect in FA patients is caused by aldehydes in early mesodermal developmental stage. Disclosures: No relevant conflicts of interest to declare.


2020 ◽  
Author(s):  
Juan A. Cantres-Velez ◽  
Justin L. Blaize ◽  
David A. Vierra ◽  
Rebecca A. Boisvert ◽  
Jada M. Garzon ◽  
...  

AbstractFanconi anemia (FA) is a rare genetic disease characterized by increased risk for bone marrow failure and cancer. The FA proteins function together to repair damaged DNA. A central step in the activation of the FA pathway is the monoubiquitination of the FANCD2 and FANCI proteins under conditions of cellular stress and during S-phase of the cell cycle. The regulatory mechanisms governing S-phase monoubiquitination, in particular, are poorly understood. In this study, we have identified a CDK regulatory phospho-site (S592) proximal to the site of FANCD2 monoubiquitination. FANCD2 S592 phosphorylation was detected by LC-MS/MS and by immunoblotting with a S592 phospho-specific antibody. Mutation of S592 leads to abrogated monoubiquitination of FANCD2 during S-phase. Furthermore, FA-D2 (FANCD2-/-) patient cells expressing S592 mutants display reduced proliferation under conditions of replication stress and increased mitotic aberrations, including micronuclei and multinucleated cells. Our findings describe a novel cell cycle-specific regulatory mechanism for the FANCD2 protein that promotes mitotic fidelity.Author SummaryFanconi anemia (FA) is a rare genetic disease characterized by high risk for bone marrow failure and cancer. FA has strong genetic and biochemical links to hereditary breast and ovarian cancer. The FA proteins function to repair DNA damage and to maintain genome stability. The FANCD2 protein functions at a critical stage of the FA pathway and its posttranslational modification is defective in >90% of FA patients. However, the function, and regulation of FANCD2, particularly under unperturbed cellular conditions, remains remarkably poorly characterized. In this study, we describe a novel mechanism of regulation of the FANCD2 protein during S-phase of the cell cycle. CDK-mediated phosphorylation of FANCD2 on S592 promotes the ubiquitination of FANCD2 during S-phase. Disruption of this phospho-regulatory mechanism results in compromised mitotic fidelity and an increase in mitotic chromosome instability.


2008 ◽  
Vol 29 (1) ◽  
pp. 229-240 ◽  
Author(s):  
Hua He ◽  
Yang Wang ◽  
Xiaolan Guo ◽  
Sonal Ramchandani ◽  
Jin Ma ◽  
...  

ABSTRACT The Protection of telomeres 1 (POT1) protein is a single-stranded telomere binding protein that is essential for proper maintenance of telomere length. Disruption of POT1 function leads to chromosome instability and loss of cellular viability. Here, we show that targeted deletion of the mouse Pot1b gene results in increased apoptosis in highly proliferative tissues. In the setting of telomerase haploinsufficiency, loss of Pot1b results in depletion of germ cells and complete bone marrow failure due to increased apoptosis, culminating in premature death. Pot1b −/ − mTR +/ − hematopoietic progenitor and stem cells display markedly reduced survival potential in vitro. Accelerated telomere shortening, increased G overhang and elevated number of chromosome end-to-end fusions that initiate an ATR-dependent DNA damage response were also observed. These results indicate an essential role for Pot1b in the maintenance of genome integrity and the long-term viability of proliferative tissues in the setting of telomerase deficiency. Interestingly, these phenotypes closely resemble those found in the human disease dyskeratosis congenita (DC), an inherited syndrome characterized by bone marrow failure, hyperpigmentation, and nail dystrophy. We anticipate that this mouse will serve as a useful model to further understand the pathophysiology of DC.


Blood ◽  
2020 ◽  
Vol 136 (Supplement 1) ◽  
pp. 4-5
Author(s):  
Burak Altintas ◽  
Neelam Giri ◽  
Lisa J. McReynolds ◽  
Blanche P. Alter

Fanconi anemia (FA) is a predominantly autosomal recessive disorder resulting from mutations in one of >22 genes involved in the FA/BRCA DNA repair pathway. FA is characterized by multiple congenital abnormalities, progressive bone marrow failure (BMF) and cancer predisposition. Genetic heterogeneity and diverse clinical presentations challenge early diagnosis and optimal management. We previously reviewed the genotype-phenotype associations in FA from literature cases (Fiesco-Roa MO et al. Blood Rev. 2019). We now report the results from the NCI cohort. We studied 147 patients with FA in the NCI inherited bone marrow failure syndromes Cohort Study (ClinicalTrials.gov, NCT00027274) to explore genotype phenotype associations by genes, location in the FA/BRCA pathway (upstream, ID complex, downstream), and compare information on the clinic cohort (CC) and field cohort (FC) patients. 57 patients (CC) were evaluated at the NIH Clinical Center between 2002 and 2020. Details on 90 patients in the FC were obtained from the review of medical records. The sex ratio (M:F) was similar (0.6:1 and 0.8:1). Patients in the FC were younger than in the CC (p=0.004) with median ages 27 (3-68) years for the CC and 19 (0-57) for the FC. The main genotypes in the CC were 59% FANCA, 17% FANCC, 6% FANCI and in the FC were 60% FANCA, 13% FANCC and 8% FANCG. At least one FA type physical abnormality was present in all CC patients and 73/79 (92%) FC patients (phenotype data not reported on 11 FC patients). >3/8 VACTERL-H features (Vertebral, Anal, Cardiac, Tracheo-esophageal fistula (TEF), Esophageal or duodenal atresia, Renal, upper Limb (radial ray) and Hydrocephalus) were present in 32% of CC patients and 16% of FC (p=0.04). At least 4/6 PHENOS features (skin Pigmentation, small Head, small Eyes, other central Nervous system (CNS) anomalies, Otology and Short stature) were present in 54% of CC patients and 34% FC (p=0.02). The types and frequencies of phenotypic abnormalities are shown in figure 1. 17 patients in the CC (30%) and 10 in the FC (13%) had both VACTERL-H and PHENOS (p=0.01). We excluded patients with unknown genotype or phenotype from further analysis. In the CC, cardiac abnormalities were more common in patients with FANCI or ID complex gene variants than in all others (p=0.02 and 0.001, respectively) as were VACTERL-H and structural CNS abnormalities in patients with ID complex variants (p=0.03 and 0.006, respectively). In the FC, VACTERL-H, imperforate anus and hydrocephalus were more common in patients with FANCD1 genotype (p=0.03, 0.009 and 0.004, respectively) and downstream pathway gene variants (p=0.004, <0.001 and 0.03, respectively). PHENOS, renal and neurodevelopmental abnormalities were less common in patients with upstream genes variants (p=0.001, 0.009 and <0.001, respectively). Upper limb abnormalities were less common in patients with FANCC genotype (p=0.007). BMF was present in 121/147 (88%) patients; 33% had been transfusion-dependent and 26% received androgen therapy. Clonal cytogenetic abnormalities were seen in 30%; 17% developed myelodysplastic syndrome at a median age of 17 (1.4-44) years and 6 patients developed acute myeloid leukemia at a median age of 19 (12-29) years. 72 (49%) patients underwent bone marrow transplant at a median age of 9.5 (1.5-44) years for BMF, MDS or leukemia. There was no significant difference between the FC and CC. The median survival age of our cohort is 38 (95% CI 34-43) years and at least 80% of our patients are >18 years of age. Kaplan-Meier survival estimates are presented in figure 2. Solid tumors developed in 30/135 (22%) patients with available data; median age at first cancer was 30 (2-44) years. The most common tumor was head and neck squamous cell carcinoma (n=15 patients), followed by skin (n=8) and anogenital cancers (n=6); many patients developed multiple cancers. Detailed hematologic, cancer, endocrine outcomes and survival analyses are ongoing. Overall, renal and upper limb abnormalities were reported in most of the patients in both CC and FC, as shown previously (Alter BP et al. Mol Syndromol. 2013). Data from the CC were more complete than from the review of charts from the FC highlighting that the clinical in person evaluation of patients provides detailed characterization of FA phenotypes and more accurate assessment of genotype-phenotype associations. This will facilitate timely diagnosis, surveillance and clinical management of patients with FA. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 975-975
Author(s):  
Samuel Quentin ◽  
Wendy Cuccuini ◽  
Raphael Ceccaldi ◽  
Olivier Nibourel ◽  
Corinne Pondarre ◽  
...  

Abstract Abstract 975 Fanconi anemia (FA) is a rare genetic condition characterized by congenital abnormalities, chromosome fragility, progressive bone marrow failure during childhood, and cancer susceptibility. FA patients experience a high risk to develop myelodysplasia (MDS) and secondary-type acute myeloid leukemia (AML) during their teens or in young adulthood. Severity of the cytopenia, excess of blast cells and presence of a cytogenetic clone in the bone marrow are usual criteria to undertake hematopoietic stem cell transplantation. In order to investigate the pattern of chromosomal and genomic abnormalities during bone marrow progression in FA and their association to MDS/AML, we analyzed bone marrow samples from FA patients using a wide panel of chromosomal and molecular techniques including DNA microarrays and oncogene sequencing. This series of FA patients was enriched in patients older than 18 year-old and/or with morphological or karyotypic abnormalities on the follow up BM aspirate. 57 FA patients were included, aged 4 to 57 yo (median 18); FA groups were FA-A (n=49), FA-G (n=1), FA-D2 (n=1), FA-D1 (n=1) and undertermined (n=5). Bone marrow morphology was hypoplastic/aplastic anemia (n=20), MDS (n=18, mainly RCMD and RAEB according to the WHO 2008 classification), AML (n=11), or no abnormality except the usual mild dyserythropoiesis of FA (n=8). Bone marrow samples were analyzed by karyotype, FISH, high density array-CGH and/or SNP-arrays with respect to the paired fibroblast DNAs, and by sequencing of selected oncogenes and tumor suppressor genes. A specific pattern of genomic abnormalities due to unbalanced translocations was found in the 29 MDS/AML, which included 1q+ (44.8%), 3q+ (41.3%), -7/7q (17.2%), and 11q- (13.8%). Moreover, cryptic abnormalities (translocations, deletions or mutations) of the RUNX1/AML1 gene were evidenced for the first time in FA, in 6 out of the 29 patients with MDS or AML (20.7%). By contrast, mutations of FLT3-ITD, MLL-ITD, and N-RAS, but not TP53, CBL, TET2, CEBPa, NPM1, and FLT3-TKD, were rarely found. Frequent homozygosity regions were evidenced by SNP-array in 11 patients, but the analysis of the paired fibroblast DNA and the constitutional FANC mutations demonstrated that they were not related to somatic copy-neutral loss of heterozygosity but to consanguinity. Importantly, the RUNX1/AML1 and other chromosomal/genomic abnormalities were found at the MDS and AML stages only, except for 1q+ which could be found at any stages including normal bone marrow morphology. In our experience 1q+ does not predict systematically a transformation into MDS/AML in the following years. These data have important implications, not only for the cytogenetic staging of the bone marrow cells in FA patients with an impact for therapeutic managing, but also as a basis to investigate the multistep clonal selection and related oncogenesis in patients with hypoplastic bone marrow and genomic instability, with potential relevance for non-FA patients. Disclosures: Gluckman: Cord-use: Membership on an entity's Board of Directors or advisory committees.


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 357-357 ◽  
Author(s):  
Donna Cerabona ◽  
Zahi Abdul Sater ◽  
Rikki Enzor ◽  
Grzegorz Nalepa

Abstract Fanconi anemia (FA) is a complex genetic disorder characterized by bone marrow failure, multiple congenital anomalies, and genomic instability resulting in predisposition to cancer. Disruption of the FA signaling network impairs multiple genome-housekeeping processes, including DNA damage recognition and repair in interphase, DNA replication as well as high-fidelity chromosome segregation during mitosis. Recent data published by several groups, including our work (J Clin Invest 2013; 123: 3839-3847), implicated FA signaling in the control of several cell division events essential for chromosomal stability, including the spindle assembly checkpoint (SAC), centrosome maintenance, resolution of ultrafine anaphase bridges and cytokinesis. Understanding the mechanistic origins of chromosomal instability leading to carcinogenesis and bone marrow failure has important scientific and clinical implications. However, the relative contribution of the interphase and mitotic events leading to genomic instability in Fanconi anemia has not been systematically evaluated. In this work, we dissected the origins and mechanistic significance of chromosomal instability in Fanconi anemia ex vivo and in vivo. We employed the cytochalasin micronucleus assay to quantify the patterns of spontaneous and chemotherapy-induced genomic lesions in FA-A patient-derived primary fibroblasts and Fancc-/- mouse embryonic fibroblasts (MEFs). In this assay, dividing cells are treated with cytochalasin to inhibit cytokinesis and generate binucleated daughter cells. The presence of micronuclei in the resulting cells is indicative of genomic instability caused by either interphase DNA damage or chromosome mis-segregation. Centromere-negative micronuclei (CNMs) represent chromosomal fragments due to unresolved ds-DNA damage. Centromere-positive micronuclei (CPMs) result from whole-chromosome mis-segregation during mitosis. The frequency of both CPMs and CNMs was significantly increased in FA-deficient human and murine cells compared to gene-corrected isogenic control cells. These results indicate that genomic instability in FA is caused by a combination of interphase DNA damage and disordered mitosis. We confirmed the biological significance of these findings by showing that FA patient cells are hypersensitive to low concentrations of taxol (a spindle checkpoint-activating chemotherapeutic) similarly to mitomycin C (a cross-linking agent). Finally, we found increased frequency of micronuclei in Fancc-/- murine red blood cells compared to age-matched wild-type mice, which indicates that spontaneous chromosome mis-segregation occurs in FA-deficient bone marrow in vivo. Our study supports the emerging model of the FA family of proteins as holistic guardians of the genome during interphase and mitosis (see figure based on F1000Prime Rep. 2014; 6: 23, modified). This model furthers our understanding of genomic instability in Fanconi anemia and FA-deficient cancers, and opens new inroads towards targeted therapeutic interventions in these diseases. Figure 1 Figure 1. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
1998 ◽  
Vol 91 (8) ◽  
pp. 2737-2744 ◽  
Author(s):  
Madeleine Carreau ◽  
Olga I. Gan ◽  
Lili Liu ◽  
Monica Doedens ◽  
Colin McKerlie ◽  
...  

Fanconi anemia (FA) is a pleiotropic inherited disease that causes bone marrow failure in children. However, the specific involvement of FA genes in hematopoiesis and their relation to bone marrow (BM) failure is still unclear. The increased sensitivity of FA cells to DNA cross-linking agents such as mitomycin C (MMC) and diepoxybutane (DEB), including the induction of chromosomal aberrations and delay in the G2 phase of the cell cycle, have suggested a role for the FA genes in DNA repair, cell cycle regulation, and apoptosis. We previously reported the cloning of the FA group C gene (FAC) and the generation of a Fac mouse model. Surprisingly, the Fac −/− mice did not show any of the hematologic defects found in FA patients. To better understand the relationship of FA gene functions to BM failure, we have analyzed the in vivo effect of an FA-specific DNA damaging agent in Fac −/− mice. The mice were found to be highly sensitive to DNA cross-linking agents; acute exposure to MMC produced a marked BM hypoplasia and degeneration of proliferative tissues and caused death within a few days of treatment. However, sequential, nonlethal doses of MMC caused a progressive decrease in all peripheral blood parameters of Fac −/− mice. This treatment targeted specifically the BM compartment, with no effect on other proliferative tissues. The progressive pancytopenia resulted from a reduction in the number of early and committed hematopoietic progenitors. These results indicate that the FA genes are involved in the physiologic response of hematopoietic progenitor cells to DNA damage.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 799-799
Author(s):  
Dagmar Walter ◽  
Amelie Lier ◽  
Anja Geiselhart ◽  
Sina Huntscha ◽  
David Brocks ◽  
...  

Abstract Long-term quiescence has been proposed to preserve the genomic stability of hematopoietic stem cells (HSCs) during aging. The current models of HSC aging are limited in their ability to observe both DNA damage in vivo and the consequences of this damage upon hematopoiesis. Fanconi Anemia (FA) is a hereditary multisystem disorder, characterized by defective DNA damage response and progressive bone marrow failure in most patients. However, the existing genetic models of FA do not develop aplastic anemia, suggesting that cell-extrinsic factors may play a causal role. We sought to identify whether physiologic mediators of HSC activation could be used as agonists to provoke DNA damage and HSC attrition in vivo. Mice were treated with a range of agonists that promote the in vivo exit of HSC from a dormant state into active cycling (polyI:polyC; Interferon-α; G-CSF; TPO; and serial bleeding). Highly purified HSC demonstrated a rapid 3-5-fold induction of DNA damage after treatment with all agonists (p<0.01), as assessed by both enumerating γ-H2AX foci and by alkaline comet assay. Mechanistically, stress-induced exit from quiescence correlated with increased mitochondrial metabolism in HSC, as evaluated by elevated mitochondrial membrane potential (2-fold increased, p<0.01) and superoxide levels (1.5-fold increased, p<0.05). Critically, we could directly implicate these reactive oxygen species in DNA damage as we observed a 1.4-fold increase in 8-Oxo-dG lesions in HSC that had been activated into cycle in vivo(p<0.05). At 48 h post-treatment, γ-H2AX levels began to decrease and this repair was concomitant with an induction of the FA signaling pathway in HSC, as demonstrated by both increased levels of FA gene expression and elevated FANCD2 foci (4-fold induction, p<0.01). Treatment of Fanca-/- mice with polyI:polyC led to a HSC proliferative response comparable to wild type (WT) mice but resulted in a 2-fold higher level of activation-induced DNA damage (p<0.05), demonstrating that this repair pathway is involved in resolving activation-induced DNA damage. Four rounds of serial in vivo activation led to a permanent depletion of the most primitive label-retaining Fanca-/- HSC and this correlated with a 4-fold depletion of functional HSC (p<0.01) as defined by competitive repopulation assays. Subsequent rounds of HSC activation with polyI:polyC resulted in the onset of a severe aplastic anemia (SAA) in 33% of treated Fanca-/- mice but not in any of the WT controls. SSA was characterized by a dramatic reduction in bone marrow (BM) cellularity, profound thrombocytopenia (21-246x106 platelets/ml), leukocytopenia (0.4-0.5x106 WBC/ml), neutropenia (0.03-0.1x106/ml) and anemia (1.5-2.3 g/dL Hb). Examination of BM HSC/progenitors demonstrated nearly complete loss of HSC, MPP, CMP and CLP (depletion of ≥33x, 8x, 4x and 12x respectively compared to PBS-treated Fanca-/-controls). Taken together, these data demonstrates that enforced exit from dormancy in vivo leads to de novo DNA damage in HSC, which is repaired by activation of a FA-dependent DNA damage response. Furthermore, the highly penetrant bone marrow failure observed in Fanconi anemia patients can be recapitulated by the serial application of a physiologic HSC activating signal to Fanca-/- mice. This suggests that the BM failure in FA may be caused by an aberrant response to HSC activation, most likely during exposure to infection or other physiologic stressors. These data provides a novel link between pro-inflammatory cytokines, DNA damage and HSC dysfunction and may have important clinical implications relevant to both prevention of BM failure in FA and in the study of age-related hematopoietic defects in non-FA patients. Moreover, these data provide the first evidence that FA knockout mouse models accurately recapitulate and provide novel insights into the etiology of BM failure in patients with FA. Disclosures: No relevant conflicts of interest to declare.


Sign in / Sign up

Export Citation Format

Share Document