TRIBOLOGICAL CHARACTERISTICS OF POLYURETHANES USED FOR THE SOLES OF FOOTWEAR

Tribologia ◽  
2021 ◽  
Vol 294 (6) ◽  
pp. 71-75
Author(s):  
Jacek Przepiórka ◽  
Marian Szczerek ◽  
Marian W. Sułek

The inability to take into account the type of base material (floor, pavement, soil), as well as the inability to take into account the variable friction conditions – load, intermediary medium (water, loose abrasive, sand or other soil particles), sliding velocity, and ambient temperature – is a significant limitation the use of friction methods and devices used so far in the footwear industry to precisely anticipate the behavior of the bottom materials in the actual operating conditions of the footwear. These limitations prompted the authors to adapt a tribological tester for this purpose, used in the area of construction and operation of machines and material engineering. A research methodology was developed and, in order to verify it, measurements of the coefficient of friction and wear of polyurethane used for shoe soles in combination with a raw and varnished wooden substrate were carried out. The obtained test results are characterized by diversity, which proves the high research resolution of the developed method. It allows determining the coefficient of friction of associations influencing the slip of the footwear and the wear and tear that determines the length of use of the footwear.

1971 ◽  
Vol 93 (4) ◽  
pp. 1225-1228 ◽  
Author(s):  
W. L. Starkey ◽  
T. G. Foster ◽  
S. M. Marco

A new design parameter, friction-instability, is defined in this paper. Friction-instability is a variation in the coefficient of friction which may occur at any time during the life of a brake lining. A friction-index is defined which measures this variation. A lining which has a high friction index may tend to cause an automobile to swerve either to the right or to the left. A unique experimental facility is described by means of which the friction-instability characteristics of brake linings can be measured. Test results using this facility are presented and interpreted. The friction-index is proposed as a new parameter which should be taken into consideration when brakes are designed and, developed. This index should be particularly useful as a quality control device to insure that machines which use mass-produced braking systems will perform in a safe and effective manner.


1981 ◽  
Vol 103 (1) ◽  
pp. 73-82 ◽  
Author(s):  
H. Winter ◽  
H. Wilkesmann

The formulae of classical hydrodynamics are not suitable for the calculation of load capacity and power loss of worm gear drives. Thus a theoretical basis had to be developed for the comparison of different tooth profiles, materials of worm and worm wheel and lubricants. The data obtained were compared with test results. It proved that the coefficient of friction is an important influence factor.


Author(s):  
Takashi Nogi

Some tribological properties of an ionic liquid were investigated by using a pin-on-disc friction and wear tester. Due to running-in, the coefficient of friction of the ionic liquid decreased with time to a very low value of 0.02 which suggests that the lubrication regime was hydrodynamic at the end of the tests. Anti-wear performance of the ionic liquid was substantially comparable to a paraffin-based oil.


2012 ◽  
Vol 184-185 ◽  
pp. 688-691
Author(s):  
Huan Xue ◽  
Rong Feng Li ◽  
Hong Chuan Zhu

The definition and research background of friction is introduced. The reason of generation of friction is analyzed, the importance of the coefficient of friction test in sheet metal forming field is indicated. The testing principle of coefficient of friction on metallic sheet is presented. The basic data processing method of the test is described. Two important data processing techniques which will obviously effects the test results, including effective friction zone and normal pressure have been carefully studied. The comparison result shows these techniques can effectively enhance the testing stability and precision.


2016 ◽  
Vol 37 (3) ◽  
pp. 230-236 ◽  
Author(s):  
Yu. Yu. Osenin ◽  
Douma Mansur Al-Makhdi ◽  
Yu. I. Osenin ◽  
O. V. Sergienko ◽  
I. I. Sosnov ◽  
...  

2016 ◽  
Vol 139 (3) ◽  
Author(s):  
Myeong-Woo Ha ◽  
Kwang-Hee Lee ◽  
Chul-Hee Lee ◽  
Jong-Myung Choi ◽  
Jun-Wook An

The dispenser ejects the ceramic filler and phosphor-containing liquid for making various products. When the particle-containing liquid is ejected under high-velocity conditions, however, the ejection reliability decreases because of the wear of the contact surface between the rod and nozzle even though these components are made of hard materials. It is therefore necessary to characterize the friction and wear properties of the hard materials, tungsten carbide (WC) and zirconium (Zr), with the high-viscosity liquid-containing nitride or yttrium aluminum garnet (YAG) particles under reciprocating conditions. Particle contents of 15 wt.% and 30 wt.% are added to the liquid. A reciprocating test was implemented to this end, and WC and Zr specimens were used. The liquid used in the experiment contains nitride and YAG. The experimental results show that the particles inside the liquid are worn out, leading to particle lubrication and the decrease in the coefficient of friction. Also, it is confirmed that the more the particles are, the less the coefficient of friction is due to particle lubrication. For each experimental condition, the coefficient of friction is measured and compared. Moreover, the contact surface of the specimen is analyzed using an electron microscope, and a profilometer is used to measure the surface roughness of the specimen before and after the test. The reciprocation friction and wear characteristics of WC and Zr with phosphor-containing liquid are evaluated by analyzing the experimental results.


1993 ◽  
Vol 8 (7) ◽  
pp. 1611-1628 ◽  
Author(s):  
Bharat Bhushan ◽  
Sreekanth Venkatesan

Silicon is an attractive material for the construction of read/write head sliders in magnetic recording applications from the viewpoints of ease of miniaturization and low fabrication cost. In the present investigation we have studied the friction and wear behavior of single-crystal, polycrystalline, ion-implanted, thermally oxidized (wet and dry), and plasma-enhanced chemical vapor deposition (PECVD) oxide-coated silicon pins while sliding against lubricated and unlubricated thin-film disks. For comparison, tests have also been conducted with Al2O3–TiC and Mn–Zn ferrite pins which are currently used as slider materials. With single-crystal silicon the rise in the coefficient of friction with sliding cycles is faster compared to Al2O3–TiC and Mn–Zn ferrite pins. In each case, the rise in friction is associated with the burnishing of the disk surface and transfer of amorphous carbon and lubricant (in the case of lubricated disks) from the disk to the pin. Thermally oxidized (under dry oxygen conditions) single-crystal silicon and PECVD oxide-coated single-crystal silicon exhibit excellent tribological characteristics while sliding against lubricated disks, and we believe this is attributable to the chemical passivity of the oxide coating. In dry nitrogen, the coefficient of friction for single-crystal silicon sliding against lubricated disks behaves differently than in air, decreasing from an initial value of 0.2 to less than 0.05 within 5000 cycles of sliding. We believe that silicon/thin-film disk interface friction and wear is governed by the uniformity and tenacity of the amorphous carbon transfer film and oxygen-enhanced fracture of silicon.


2016 ◽  
Vol 2016 ◽  
pp. 1-10 ◽  
Author(s):  
Jens Wahlström

Airborne particulate emissions originating from the wear of pads and rotors of disc brakes contribute up to 50% of the total road emissions in Europe. The wear process that takes place on a mesoscopic length scale in the contact interfaces between the pads and rotors can be explained by the creation and destruction of contact plateaus. Due to this complex contact situation, it is hard to predict how changes in the wear and material parameters of the pad friction material will affect the friction and wear emissions. This paper reports on an investigation of the effect of different parameters of the pad friction material on the coefficient of friction and wear emissions. A full factorial design is developed using a simplified version of a previously developed cellular automaton approach to investigate the effect of four factors on the coefficient of friction and wear emission. The simulated result indicates that a stable third body, a high specific wear, and a relatively high amount of metal fibres yield a high and stable mean coefficient of friction, while a stable third body, a low specific wear, a stable resin, and a relatively high amount of metal fibres give low wear emissions.


1989 ◽  
Vol 111 (2) ◽  
pp. 386-390 ◽  
Author(s):  
Yufeng Li ◽  
Ali Seireg

This paper deals with the development of a dimensionless empirical formula for calculating the coefficient of friction in sliding-rolling steel on steel contacts under different operating conditions in the thermal regime. The effect of lubrication, surface roughness, and surface coating on friction are considered. The formula shows excellent correlation with the experimental tests conducted by many investigators and provides a unified relationship for all the published data.


1978 ◽  
Vol 57 (7-8) ◽  
pp. 777-783 ◽  
Author(s):  
Hillar M. Rootare ◽  
John M. Powers ◽  
Robert G. Craig

A sintered hydroxyapatite (HAP) ceramic for use in wear studies was prepared from a commerical tricalcium phosphate. The sintered HAP had physical properties close to those of human enamel. The coefficient of friction and wear of the sintered HAP ceramic as characterized by tangential force, track width, and surface failure data, approximated those of human enamel.


Sign in / Sign up

Export Citation Format

Share Document