scholarly journals Reliability Analysis of Metro Door System Based on Fuzzy Multi-State Bayesian Network

2021 ◽  
Vol 53 (5) ◽  
pp. 210509
Author(s):  
Zhenliang Fu ◽  
Na Li ◽  
Xueyan Tian ◽  
Yonghua Li ◽  
Ziqiang Sheng

Considering the shortcomings of the fault tree analysis (FTA) method in the reliability analysis of metro door systems, Bayesian network (BN) and fuzzy theory were introduced to establish the failure probability model of a metro door system. A fault tree of the metro door system was established based on the structure of the metro door, the operation data record and the practical experience of relevant engineers. The BN of the metro door system was constructed based on the fault tree. For the problem that the prior probabilities of root nodes with missing data were unavailable, fuzzy theory was introduced to convert the expert language values on these missing data nodes to corresponding prior probabilities, which were substituted into the BN along with the root nodes whose prior probabilities were obtained from the operation fault data to calculate the leaf node probability. Cause analysis of the metro door system was performed with bi-directional reasoning of BN, which provided a way to find the key factors that caused door faults and the metro door system fault probabilities.

2010 ◽  
Vol 139-141 ◽  
pp. 2587-2590 ◽  
Author(s):  
Xiao Nan Zhang ◽  
An Xin Liu ◽  
Qing Zhen Gao ◽  
Xing Qing ◽  
Xing Chang

It exists in complexity and fuzziness in structure and failure character of engineering machinery complex system. To solve the problem, fuzzy theory was introduced into fault tree analysis, and then the steps, principles and methods of fuzzy fault tree are determined. Based on the analysis of engineering machinery typical engine systemic structure and fault criterion, a fuzzy fault tree is established. Used a fuzzy mathematics method of reliability analysis with fuzzy fault rate and the median method of fuzzy significance analysis, the fuzzy fault rate and fuzzy significance of parts and subsystems is calculated. The result indicates that this method can solve the fuzziness problem of failure criterion and data in fault tree analysis. The result provides valuable reference for the reliability analysis.


Author(s):  
Yang Liu ◽  
Xiaoxue Ma ◽  
Weiliang Qiao ◽  
Huiwen Luo ◽  
Peilong He

The operational activities conducted in a shipyard are exposed to high risk associated with human factors. To investigate human factors involved in shipyard operational accidents, a double-nested model was proposed in the present study. The modified human factor analysis classification system (HFACS) was applied to identify the human factors involved in the accidents, the results of which were then converted into diverse components of a fault tree and, as a result, a single-level nested model was established. For the development of a double-nested model, the structured fault tree was mapped into a Bayesian network (BN), which can be simulated with the obtained prior probabilities of parent nodes and the conditional probability table by fuzzy theory and expert elicitation. Finally, the developed BN model is simulated for various scenarios to analyze the identified human factors by means of structural analysis, path dependencies and sensitivity analysis. The general interpretation of these analysis verify the effectiveness of the proposed methodology to evaluate the human factor risks involved in operational accidents in a shipyard.


2013 ◽  
Vol 838-841 ◽  
pp. 1463-1468
Author(s):  
Xiang Ke Liu ◽  
Zhi Shen Wang ◽  
Hai Liang Wang ◽  
Jun Tao Wang

The paper introduced the Bayesian networks briefly and discussed the algorithm of transforming fault tree into Bayesian networks at first, then regarded the structures impaired caused by tunnel blasting construction as a example, introduced the built and calculated method of the Bayesian networks by matlab. Then assumed the probabilities of essential events, calculated the probability of top event and the posterior probability of each essential events by the Bayesian networks. After that the paper contrast the characteristics of fault tree analysis and the Bayesian networks, Identified that the Bayesian networks is better than fault tree analysis in safety evaluation in some case, and provided a valid way to assess risk in metro construction.


2021 ◽  
Vol 11 (22) ◽  
pp. 10616
Author(s):  
Jingtian Xu ◽  
Man Yang ◽  
Shugang Li

The hardware reliability of a gas monitoring system was investigated using the fuzzy fault tree analysis method. A fault tree was developed considering the hardware failure of the gas monitoring system as a top event. Two minimum path sets were achieved through qualitative analysis using the ascending method. The concept of fuzzy number of the fuzzy set theory was applied to describe the probability of basic event occurrence in the fault tree, and the fuzzy failure probabilities of the middle and top events were calculated using fuzzy AND and OR operators. The results show that the proposed fuzzy fault tree is an effective method of reliability analysis for gas monitoring systems. Results of calculations using this method are more reasonable than those obtained with the conventional fault tree method.


Author(s):  
Ahmad Khayyati ◽  
Mohammad Pourgol-Mohammad

Abstract Unmanned Aerial Vehicles (UAV) are increasingly get popularity in many applications. Their operation requires high level of safety and reliability to accomplish successful missions. In this study, the reliability was comparatively analyzed by different available approaches to select the efficient method. First, failure model of the system is developed. Then, three different scenarios are considered to study the effect of redundancies on the system reliability results. In the first scenario, there is no redundancy where in the second scenario there is only one redundant component and in the third scenario, there are three redundant components. Static reliability analysis such as Fault Tree Analysis (FTA), Reliability Block Diagram (RBD), Markov Chain (MC), and Bayesian Networks (BN) are applied on proposed scenarios and results are obtained. Regarding to time dependencies between redundant components, a dynamic-based methodology is also developed in this study through applying Dynamic Fault Tree (DFT) analysis. Proposed static and dynamic approaches are applied on an UAV as a case study and results are discussed. Finally, characteristics of each methodology and related conditions are clarified for selecting the efficient reliability analysis approach.


Sign in / Sign up

Export Citation Format

Share Document