scholarly journals A Study on Characteristics and Comparison of Evaporation Estimation Methods in Bandung

2021 ◽  
Vol 53 (2) ◽  
pp. 182-199
Author(s):  
Rusmawan Suwarman ◽  
Novitasari Novitasari ◽  
I Dewa Gede Agung Junnaedhi

This study aims to understand the characteristic of evaporation and to evaluate the evaporation estimation methods to be employed in Bandung by using observation data at three different land cover characteristics sites, namely, densely vegetated area (Baleendah), densely built-up area (Ujung Berung), and mix of buildings and vegetation area (ITB). Observation data used are hourly evaporation, vapour pressure deficit, temperature, relative humidity, wind speed, and radiation. The analysis was done mostly by using statistical methods such as regression analysis and error comparison. The result shows the dominant weather factor affecting the evaporation in ITB and Ujung Berung is vapour pressure deficit, and in Baleendah is solar radiation. The methods of evaporation estimations used in this study are Trabert, Schendel, Turc, and CIMIS-Penman methods. The result shows that the original constant values of those methods are significantly correlated. However, the Schendel is found the most overestimated, and the second is Turc. The best estimated evaporation in Baleendah, ITB, and Ujung Berung is calculated using CIMIS-Penman with one hour lag of radiation, Trabert, and Calibrated Schendel, respectively. The improvement of constant value was applied to Schendel and the result is better than the original constants.

2021 ◽  
Vol 53 (2) ◽  
pp. 182-199
Author(s):  
Rusmawan Suwarman ◽  
I Dewa Gede Agung Junnaedhi ◽  
Novitasari Novitasari

This study aims to understand the characteristic of evaporation and to evaluate the evaporation estimation methods to be employed in Bandung by using observation data at three different land cover characteristics sites, namely, densely vegetated area (Baleendah), densely built-up area (Ujung Berung), and mix of buildings and vegetation area (ITB). Observation data used are hourly evaporation, vapour pressure deficit, temperature, relative humidity, wind speed, and radiation. The analysis was done mostly by using statistical methods such as regression analysis and error comparison. The result shows the dominant weather factor affecting the evaporation in ITB and Ujung Berung is vapour pressure deficit, and in Baleendah is solar radiation. The methods of evaporation estimations used in this study are Trabert, Schendel, Turc, and CIMIS-Penman methods. The result shows that the original constant values of those methods are significantly correlated. However, the Schendel is found the most overestimated, and the second is Turc. The best estimated evaporation in Baleendah, ITB, and Ujung Berung is calculated using CIMIS-Penman with one hour lag of radiation, Trabert, and Calibrated Schendel, respectively. The improvement of constant value was applied to Schendel and the result is better than the original constants.


2019 ◽  
Vol 12 ◽  
pp. 01011
Author(s):  
H.R. Schultz

The predicted developments in climate are region-specific and adaptation can only be successful considering the regional characteristics with its diverse technical, environmental, economic and social implications. One of the key concerns for many regions is the availability of water through precipitation, the distribution of precipitation throughout the year, and possible changes in evaporative demand of the atmosphere and thus water use. From rising temperatures it is mostly assumed that water holding capacity of the atmosphere will increase in the future as a function of the Clausius-Clapeyron law, which predicts an increase in the saturation vapour pressure of the atmosphere of 6–7% per degree Celsius. As a consequence, a simultaneous increase in potential evapotranspiration (ETp, the amount of water that could potentially be evaporated from soils and transpired by plants due to changes in climatic factors such as temperature, vapour pressure deficit, radiation and wind speed) is assumed in many cases, which would alter soil and plant water relations. However, the same underlying principles also predict an increase in precipitation by 1–2% per degree warming. Additionally, model predictions for many regions forecast altered precipitation patterns and thus in combination with the possibility of increased ETp, farmers around the world fear an increase in the likelyhood of water deficit and a reduction in the availability of water for irrigation. Contrary to expectations, there have been reports on a reduction in evaporative demand worldwide despite increasing temperatures. In many cases this has been related to a decrease in solar radiation observed for many areas on earth including wine growing regions in Europe until the beginning of the 80th (global dimming) of the last century. However, since then, solar radiation has increased again, but ETp did not always follow and a worldwide decrease in wind speed and pan evaporation has been observed. In order to evaluate different grape growing regions with respect to observed changes on precipitation patterns and ETp, the data of seven wine-growing areas in five countries in the Northern and Southern hemisphere across a large climatic trans-sect were analyzed (Rheingau, Germany, Burgundy, Rhone Valley, France, Napa Valley, USA, Adelaide Hills, Tasmania, Australia, Marlborough, New Zealand) were analyzed. Precipitation patterns differed vastly between locations and showed very different trends over observation periods ranging from 23 to 60 years. The ETp has increased continuously in only two of the seven wine growing areas (Rheingau and Marlborough). In most other areas, ETp has been stable during winter and summer for at least 22 years (Rhone Valley, Napa Valley, Tasmania), sometimes much longer (45 years Adelaide Hills), and has been declining in Burgundy after a period of strong increase for the last 13 years. The potential underlying factors are discussed in relation to observed shifts in precipitation patterns.


2021 ◽  
Vol 50 (1) ◽  
pp. 15-19
Author(s):  
Rakesh Punia ◽  
Pavitra Kumari ◽  
Anil Kumar ◽  
AS Rathi ◽  
Ram Avtar

Progression of Alternaria blight disease was measured on two susceptible Indian mustard varieties viz., RH 30 and RH 0749 sown at three different dates. The maximum increase in disease severity was recorded between first weeks of February and last week of February. During this period, the maximum and minimum temperature, relative humidity at morning and evening, average vapour pressure of morning and evening, maximum and bright sunshine hours and wind speed were higher, which resulted in congenial conditions for severe infection by the pathogen. The disease severity was positively correlated with maximum and minimum temperature, average vapour pressure, wind speed, sunshine hours and evaporation, while relative humidity and rainfall negatively correlated with Alternaria blight on both the varieties. A maximum value of area under disease progress curve was observed on cultivar RH 30 (651.1 cm2) as compared to RH 0749 (578.9 cm2), when crop was sown on 9th November.


1979 ◽  
Vol 27 (2) ◽  
pp. 251 ◽  
Author(s):  
MM Campbell ◽  
DS Kettle

Numbers of C. brevitarsis on cattle in south-east Queensland increased rapidly from zero at 0.5 h before sunset, to a peak during the half hour after sunset, then decreased to zero in the following 5-6 h and remained at zero throughout the day. On standing animals abundance was greatest on the ridgeline at the tail, decreasing rapidly down the flank and less rapidly towards the head. On mature animals abundance after sunset halved with each increase of 0.53 m s-1 in wind speed, each increase of 6.4�C, each decrease of 158 Pa vapour pressure deficit, and each additional 38 min after sunset. Only females were collected from cattle; 97% of nullipars were mated. They did not always feed at their first attempt and were much less likely to feed on some hosts than others. Close shaving did not alter the number of flies on small areas and did not prevent feeding. Before sunset C. brevitarsis were observed more frequently on hosts in the absence of direct sunlight. In direct sunlight, abundance was influenced most by wind speed (positive), minutes before sunset (negative) and temperature (negative), in order of decreasing importance. Without direct sunlight, the factors were minutes before sunset (negative), temperature (positive), and wind speed (negative); after sunset the factors were wind speed (negative), vapour pressure deficit (positive), minutes after sunset (negative) and minor effects from time of year and temperature.


2021 ◽  
Author(s):  
Jayashree Tenkila Ramachandra ◽  
Subba Reddy Nandanavana Veerappa ◽  
Dinesh Acharya Udupi

Abstract Accurate estimation of reference evapotranspiration (ET0) is an essential requirement for water resource management and scheduling agricultural activities. Several empirical methods have been employed in estimating ET0 across diverse climate regimes over the past decades. The Python implementation for estimation of daily and monthly ET0 values of representative stations of ten agro-climatic zones of Karnataka from 1979 through 2014 using the standard FAO Penman-Monteith method was carried out. The assessment of temporal and spatial variability of monthly ET0 values across the various agro-climatic zones done by the various statistical measures revealed that the variation in spatial ET0 values was higher than temporal indicating major differentiation of ET0 values was with respect to the stations rather than years under study. The non-parametric Mann-Kendall test conducted at 1% significance level on the annual ET0 values revealed that statistically significant increasing trend was observed for all the ten stations during the study period. The trend test conducted on the climate variables like mean air temperature, wind speed, relative humidity and solar radiation signify their influence the annual ET0 values. The magnitude changes in the trends detected by the Theil Sen’s slope indicated that increasing values of mean temperature, solar radiation and decreasing values of relative humidity predominantly contributed to the annual upward trend in ET0 values for the 10 stations. A trivial impact of wind speed on annual ET0 values was observed for the stations. Kalburgi and Udupi stations exhibited positive ET0 trend with the highest and lowest annual values among ten stations.


2017 ◽  
Author(s):  
Philip D. Jones ◽  
Colin Harpham ◽  
Alberto Troccoli ◽  
Benoit Gschwind ◽  
Thierry Ranchin ◽  
...  

Abstract. The construction of a bias-adjusted dataset of climate variables at the near surface using ERA-Interim Reanalysis is presented. A number of different bias-adjustment approaches have been proposed. Here we modify the parameters of different distributions (depending on the variable), adjusting those calculated from ERA-Interim to those based on gridded station or direct station observations. The variables are air temperature, dewpoint temperature, precipitation (daily only), solar radiation, wind speed and relative humidity, available at either 3 or 6 h timescales over the period 1979-2014. This dataset is available to anyone through the Climate Data Store (CDS) of the Copernicus Climate Change Data Store (C3S), and can be accessed at present from (ftp://ecem.climate.copernicus.eu). The benefit of performing bias-adjustment is demonstrated by comparing initial and bias-adjusted ERA-Interim data against observations.


2015 ◽  
Vol 17 (1) ◽  
pp. 175-185

<div> <p>The present study analyses future climate uncertainty for the 21st century over Tamilnadu state for six weather parameters: solar radiation, maximum temperature, minimum temperature, relative humidity, wind speed and rainfall. The climate projection data was dynamically downscaled using high resolution regional climate models, PRECIS and RegCM4 at 0.22&deg;x0.22&deg; resolution. PRECIS RCM was driven by HadCM3Q ensembles (HQ0, HQ1, HQ3, HQ16) lateral boundary conditions (LBCs) and RegCM4 driven by ECHAM5 LBCs for 130 years (1971-2100). The deviations in weather variables between 2091-2100 decade and the base years (1971-2000) were calculated for all grids of Tamilnadu for ascertaining the uncertainty. These deviations indicated that all model members projected no appreciable difference in relative humidity, wind speed and solar radiation. The temperature (maximum and minimum) however showed a definite increasing trend with 1.8 to 4.0&deg;C and 2.0 to 4.8&deg;C, respectively. The model members for rainfall exhibited a high uncertainty as they projected high negative and positive deviations (-379 to 854 mm). The spatial representation of maximum and minimum temperature indicated a definite rhythm of increment from coastal area to inland. However, variability in projected rainfall was noticed.</p> </div> <p>&nbsp;</p>


2016 ◽  
Vol 20 (suppl. 2) ◽  
pp. 603-610
Author(s):  
Bojan Matic ◽  
Hasan Salem ◽  
Vlastimir Radonjanin ◽  
Nebojsa Radovic ◽  
Sinisa Sremac

Regression analysis is used to develop models for minimal daily pavement surface temperature, using minimal daily air temperature, day of the year, wind speed and solar radiation as predictors, based on data from Awbari, Lybia,. Results were compared with existing SHRP and LTPP models. This paper also presents the models to predict surface pavement temperature depending on the days of the year using neural networks. Four annual periods are defined and new models are formulated for each period. Models using neural networks are formed on the basis of data gathered on the territory of the Republic of Serbia and are valid for that territory.


Sign in / Sign up

Export Citation Format

Share Document