Effects of Sea Level and Upwelling on Development of a Miocene Shallow-Water Tropical Carbonate Ramp System, Ponce, Puerto Rico

Author(s):  
Diana Ortega-Ariza ◽  
Evan K. Franseen
2016 ◽  
Vol 154 (2) ◽  
pp. 305-333 ◽  
Author(s):  
C. N. WATERS ◽  
P. CÓZAR ◽  
I. D. SOMERVILLE ◽  
R. B. HASLAM ◽  
D. MILLWARD ◽  
...  

AbstractA rationalized lithostratigraphy for the Great Scar Limestone Group of the southeast Askrigg Block is established. The basal Chapel House Limestone Formation, assessed from boreholes, comprises shallow-marine to supratidal carbonates that thin rapidly northwards across the Craven Fault System, onlapping a palaeotopographical high of Lower Palaeozoic strata. The formation is of late Arundian age in the Silverdale Borehole, its northernmost development. The overlying Kilnsey Formation represents a southward-thickening and upward-shoaling carbonate development on a S-facing carbonate ramp. Foraminiferal/algal assemblages suggest a late Holkerian and early Asbian age, respectively, for the uppermost parts of the lower Scaleber Force Limestone and upper Scaleber Quarry Limestone members, significantly younger than previously interpreted. The succeeding Malham Formation comprises the lower Cove Limestone and upper Gordale Limestone members. Foraminiferal/algal assemblages indicate a late Asbian age for the formation, contrasting with the Holkerian age previously attributed to the Cove Limestone. The members reflect a change from a partially shallow-water lagoon (Cove Limestone) to more open-marine shelf (Gordale Limestone), coincident with the onset of marked sea-level fluctuations and formation of palaeokarstic surfaces with palaeosoils in the latter. Facies variations along the southern flank of the Askrigg Block, including an absence of fenestral lime-mudstone in the upper part of the Cove Limestone and presence of dark grey cherty grainstone/packstone in the upper part the Gordale Limestone are related to enhanced subsidence during late Asbian movement on the Craven Fault System. This accounts for the marked thickening of both members towards the Greenhow Inlier.


2021 ◽  
Vol 91 (11) ◽  
pp. 1227-1256
Author(s):  
Diana Ortega-Ariza ◽  
Evan K. Franseen ◽  
Marcelle K. Boudagher-Fadel

ABSTRACT A Miocene (Langhian–Tortonian, ca. 15–10 Ma) tropical ramp system exposed in southern Puerto Rico is characterized by shallow-water facies consisting of heterozoans, red algae, large benthic foraminifera (LBF), and corals, which occur as isolated corals, segment- and cluster-type reefs, and reworked accumulations. Photozoan association components are limited to corals (Montastraea, Porites, Goniopora, and Agaricia) and LBF (amphisteginids, soritids, gypsinids, miliolids) that have been documented to tolerate elevated nutrients, turbidity, and cooler water conditions. Similar shallow-water carbonate systems are found throughout the Caribbean, and this regional development is thought to have resulted from the well-documented upwelling in the Caribbean during the Miocene. Sea-level fluctuations also exerted a major control on facies distributions and shifts in the Puerto Rico ramp, including a vertical facies pattern that occurs in each of three sequences. Basal parts of sequences, deposited during sea-level rises, are dominantly composed of mollusks, echinoderms, red algae, LBF, bryozoans, and solitary corals that formed in low-energy seagrass-bed environments with local associated higher-energy shoal environments. Coral facies occur only in upper parts of sequences and formed in shallow-water, low- to high-energy environments closely associated with seagrass beds during late highstands and sea-level falls. A similar vertical facies pattern occurs in time-equivalent sequences elsewhere around the Caribbean. Strontium-isotope age data indicate two sequence boundaries reflecting sea-level falls formed at about 12.3 Ma and 11.1 Ma. Correlation with time-equivalent unconformities in other well-dated areas in the Caribbean and to sea-level lows on eustatic curves suggests a global signature for sequence development. The connection between the Caribbean and the Pacific along the Central American Seaway (CAS), impacted by local tectonic episodes and sea-level fluctuations during the Miocene, affected nutrient influx and upwelling in the Caribbean, which may be reflected in the vertical facies pattern in shallow-water carbonate sequences. Times of restricted connection during sea-level falls and lows resulted in reduced nutrients and upwelling, which may have been more conducive to coral development. Time-equivalent tropical carbonate systems in the Mediterranean and Indo-Pacific show similarities to those in the Caribbean, indicating influence of global processes (cooling, temperature gradients, oceanographic circulation). Differences between areas indicates the importance of local and regional controls, which in the Caribbean was dominantly the opening and closure of the CAS.


GeoArabia ◽  
2013 ◽  
Vol 18 (4) ◽  
pp. 49-80
Author(s):  
Afshin Zohdi ◽  
Reza Mousavi-Harami ◽  
Seyed Ali Moallemi ◽  
Asadollah Mahboubi ◽  
Adrian Immenhauser

ABSTRACT We document and discuss the results of detailed fieldwork, facies analysis and the subsequent integration of paleoecological evidence from the Middle Eocene carbonate ramp succession in the southeast Zagros Basin (Jahrum Formation). A combination of a sea-level fall and tectonic and diapiric basement uplift favored the initiation of the Jahrum carbonate platform. The lower portions are affected by pervasive, probably early diagenetic dolomitization, whilst the upper Jahrum consists mainly of limestone. Here, the focus is on the limestone portions of the Jahrum Formation. Based on the abundance, diversity and rapid evolutionary turnover of the alveolinids and nummulitids, the limestone intervals of the Jahrum Formation are interpreted for the upper Middle Eocene (Bartonian). The Jahrum Formation is capped by a major unconformity and overlain by the Lower Oligocene mixed clastic/carbonate Razak Formation. Based on data from field sections, eight facies associations and a series of sub-types have been established, which correspond to inner-, middle-and outer-ramp depositional environments. In their overall context, these data show a southward-dipping inner-ramp-to-basin transect. Towards the Coastal Fars (e.g. Hulur-01 Well) the Jahrum grades laterally into deep-marine Pabdeh foredeep shale units. Based on facies analysis and paleoecological evidence from larger benthic foraminifera, a major transgressive-regressive pattern is recognized in all outcrop sections of the Jahrum. The lowermost stratigraphic units of the formation are here interpreted as a distally steepened ramp. Evidence comes from abundant allochthonous shallow-water facies in the distal, deeper-ramp setting. Shallow-water carbonate clasts were exported towards the basin, a feature that is probably linked to relative sea-level fall control. Furthermore, local to regional basement instabilities by salt diapir-related basement reorganization was arguably of significance. Upsection, evidence is found that the ramp system evolved from a distally steepened to a homoclinal geometry with an overall very gentle slope geometry during the Late Bartonian. The data shown here are significant for those concerned with the Paleogene evolution of the southeast Zagros Basin and provide a well-exposed case example of a Middle Eocene carbonate ramp factory.


2016 ◽  
Vol 86 (3) ◽  
pp. 359-372 ◽  
Author(s):  
Pierluigi Pieruccini ◽  
Claudio Di Celma ◽  
Federico Di Rita ◽  
Donatella Magri ◽  
Giorgio Carnevale ◽  
...  

AbstractA 25 m-thick outcrop section exposed at Torre Mucchia, on the sea-cliff north of Ortona, eastern central Italy, comprises a rare Middle Pleistocene succession of shallow-water and paralic sediments along the western Adriatic Sea. An integrated study of the section, including facies and microfacies analyses, and characterization of paleobiological associations (mollusks, fishes, ostracods, foraminifers and pollen), enable a detailed reconstruction of the paleoenvironmental and paleoclimatic conditions during deposition. The shallow-water deposits include a transgressive, deepening- and fining-upward shoreface to offshore-transition facies succession overlain by a regressive shoreface-foreshore sandstone body with an erosive base and a rooted and pedogenically altered horizon at the top that imply deposition during sea-level fall. This forced regressive unit is overlain by paralic strata forming a transgressive succession comprising palustrine carbonates and back-barrier lagoonal mudstones. The palustrine carbonates exhibit some of the typical features encountered in palustrine limestones deposited within seasonal freshwater wetlands (marl prairies). Following the sea-level rising trend, the freshwater marshes were abruptly replaced by a barrier-lagoon system that allowed deposition of the overlying mud-rich unit. Within these deposits, the faunal assemblages are consistent with a low-energy brackish environment characterized by a relatively high degree of confinement. The pollen record documents the development of open forest vegetation dominated by Pinus and accompanied by a number of mesophilous and thermophilous tree taxa, whose composition supports a tentative correlation with Marine Oxygen Isotope Stage 17. The new pollen record from Torre Mucchia improves our understanding of the vegetation development in the Italian Peninsula during the Middle Pleistocene and sheds new light on the role played by the most marked glacial periods in determining the history of tree taxa.


2003 ◽  
Vol 50 ◽  
pp. 105-114
Author(s):  
T. Hansen ◽  
A.T. Nielsen

Over 5000 trilobites have been collected from Lower Ordovician rocks exposed at the Lynna River in the Volkhov region, east of St. Petersburg, Russia. Bed-by-bed sampling has been carried out through the upper part of Volkhov Formation (top of Jeltiaki Member and the entire Frizy Member), the Lynna Formation and the basal part of the Obukhovo Formation. This interval, which is 7.5 metres thick, correlates with the upper part of the Arenig Series, and presumably even ranges into the very base of the Llanvirn. A preliminary biostratigraphical investigation of top Jeltiaki Member (BIIβ), Frizy Member (BIIγ) and basal Lynna Formation (BIIIα) reveals a rather continuous faunal turnover lacking sharp boundaries, and the biostratigraphical zonation (BIIβ–BIIIα) is primarily defined by the index trilobite taxa. The trilobite ranges are generally in agreement with the pattern described by Schmidt in 1907. The abundance ratio between Asaphus and the ptychopygids seems to be related to changes in relative sea level with Asaphus preferring the most shallow water conditions. A tentative interpretation of sea-level changes suggests an initial drowning at the base of BIIγ, immediately followed by a lowstand that in turn was succeeded by a moderate sea-level rise and then a significant fall. The last marks the BIIγ/BIIIα boundary. Correlation with sections in Scandinavia suggests that the basal part of BIIγ is strongly condensed.


2018 ◽  
Vol 40 (1) ◽  
pp. 53
Author(s):  
K. Getsos ◽  
F. Pomoni-Papaioannou ◽  
A. Zelilidis

Facies analysis of Cretaceous carbonate sequences from the external and central Ionian zone revealed a homoclinal ramp model of evolution. During Berriasian to Valanginian, the carbonate ramp was differentiated to an inner-mid and outer ramp environment, which corresponded to the external and central Ionian zone, respectively, while the main inner ramp environment is assumed that was located in the Pre-Apulian zone. The external Ionian zone (inner-mid ramp) is characterized by muds tones-wackes tones with fragmented echinoderms, bivalves, radiolarians and rare aptychus considered to be deposited below the fairweather wave base (FWWB). Locally, thin graded storm deposits intervene, indicating deposition above the storm weather wave base (SWB). Minor occurrences of packs tonesgrainstones, with fragmented echinoderms, calcareous algae, tubiphytes, lagenid foraminifera and rare ooids occur, as well, considered to be deposited at the lowermost part of the inner ramp, near the constantly agitated fairweather wave base (FWWB). The central Ionian zone (outer ramp) is mainly characterized by mudstones-wackestones with abundant radiolarians and rare calpionellids and calcispheres, considered to be deposited below the storm wave base (SWB). No talus or breccias deposits were observed, during the mentioned time interval, in any part of the studied area. From Hauterivian to Turonian, continual sea-level rise, led to establishment of outer ramp environment in the external Ionian zone, over the previous inner-mid ramp, and outer ramp-basin environment, over the previous outer ramp, in the central Ionian zone. The transition from shallower to deeper conditions is characterized by an overall deposition of mudstones-wackestones with abundant radiolarians rooted in pure micrite. 


1969 ◽  
Vol 93 (3-4) ◽  
pp. 149-171
Author(s):  
Jorge L. Lugo-Camacho ◽  
Miguel A. Muñoz ◽  
Juan Pérez-Bolívar ◽  
Gregory R. Brannon

Soil temperature measurements from a climate monitoring network in Puerto Rico were evaluated and the difference between mean summer and mean winter soil temperature, known as isotivity value, was calculated. Air and soil temperature was collected from five weather stations of the USDA-Natural Resources Conservation Service from sea level to 1,019 m above sea level and from different soil moisture regimes. Isotivity values ranged from 1.2 to 3.9° C with an average of 2.6° C. The 750-m elevation was identified as the limit between the isohyperthermic and isothermic soil temperature regimes in the perudic soil moisture regime in Puerto Rico. The greatest differences between mean annual soil temperature and mean annual air temperature were observed at Guánica, Combate and Guilarte (2.1 ° C) stations. The smallest differences were observed at Maricao (0.8° C) and Isabela (1.8° C) stations. The study also indicated that the mean annual soil temperature in Puerto Rico can be estimated by adding 1.8° C to the mean annual air temperature or by the equation y = -0.007x + 28.0° C. The equation indicates that 97 percent of the time the behavior of the mean annual soil temperature is a function of elevation. According to the updated soil temperature regime boundaries, eight soil series were established in the Soil Survey of San Germán Area. In an area under the isothermic soil temperature regime, four soil series were classified as Oxisols (Haploperox), two soil series as Inceptisols (Eutrudepts) and two soil series as Mollisols (Argiudolls). This is the first field recognition of the Haploperox soil great group in the United States and its territories.


Sign in / Sign up

Export Citation Format

Share Document