STUDY ON PROPULSIVE PERFORMANCE OF TWO GEOMETRICALLY SIMILAR PODDED PROPULSORS

2021 ◽  
Vol 155 (A4) ◽  
Author(s):  
M Islam ◽  
A Akinturk ◽  
B Veitch ◽  
Pengfei Liu

This paper presents the outcome of a research to evaluate the effect of size on the propulsive performance of podded propulsors in cavitating and non-cavitating open water conditions. Two cases are examined, namely: propeller-only case and pod-unit case. In the propeller-only case, a commercial propeller dynamometer is used to measure the thrust and torque of two propellers of different size at the four quadrants of propellers with varied shaft and flow speeds. Also, both propellers are tested at different tunnel pressure to study and compare the behaviour under similar cavitation conditions. In the pod-unit case, two geometrically similar but different sized pod-units are tested using two separate custom-made pod dynamometer systems in two towing tank facilities in straight-ahead and static azimuthing conditions. The study showed that the performance characteristics stabilize at lower Reynolds Number for the smaller propeller than the larger propeller. The propulsive performance of the two propellers was comparable in the four-quadrant experiments. Also, the experiments at the cavitating conditions showed that the cavitation characteristics of the two propellers were consistent at corresponding operating conditions. The experiment results of the two pod-units were also comparable for forces and moments in the three coordinate directions in the straight-ahead and static azimuthing conditions. A brief discussion on the uncertainty assessments for each of the measurements is also presented.

2013 ◽  
Vol 155 (A4) ◽  

This paper presents the outcome of a research to evaluate the effect of size on the propulsive performance of podded propulsors in cavitating and non-cavitating open water conditions. Two cases are examined, namely: propeller-only case and pod-unit case. In the propeller-only case, a commercial propeller dynamometer is used to measure the thrust and torque of two propellers of different size at the four quadrants of propellers with varied shaft and flow speeds. Also, both propellers are tested at different tunnel pressure to study and compare the behaviour under similar cavitation conditions. In the pod-unit case, two geometrically similar but different sized pod-units are tested using two separate custom-made pod dynamometer systems in two towing tank facilities in straight-ahead and static azimuthing conditions. The study showed that the performance characteristics stabilize at lower Reynolds Number for the smaller propeller than the larger propeller. The propulsive performance of the two propellers was comparable in the four-quadrant experiments. Also, the experiments at the cavitating conditions showed that the cavitation characteristics of the two propellers were consistent at corresponding operating conditions. The experiment results of the two pod-units were also comparable for forces and moments in the three coordinate directions in the straight-ahead and static azimuthing conditions. A brief discussion on the uncertainty assessments for each of the measurements is also presented.


Author(s):  
Mohammed Islam ◽  
Ron Ryan ◽  
David Molynuex

This paper presents methodologies and some results of a numerical and experimental program to evaluate the effects of static azimuthing conditions on the propulsive characteristics of a puller podded propulsor in open water. In the experimental effort, the model propulsor was instrumented to measure thrust, torque and rotational speed of the propeller, and three orthogonal forces and moments, and azimuthing angle of the pod. The experimental results included the bare propeller (ahead only) and the combined propeller and pod over a range of advance coefficients at various static azimuthing angles in the range of −180° to 180°. A complementary numerical study is being carried out to predict the hydrodynamic forces of podded propulsor in static azimuthing conditions. A Reynolds-Averaged Navier Stokes solver is used to predict the propulsive performance of the bare propeller as well as the podded propulsor system. The thrust and torque for the bare propeller were compared to the corresponding measurements. The propeller thrust and torque as well as the loads on the pod in straight-ahead condition and at static azimuthing angles were then compared with the measurements. Preliminary analysis demonstrates that the RANS solver could predict the performance coefficients of the bare propeller as well as the podded propulsor in straight-ahead and static azimuthing angles in puller configurations.


Author(s):  
Mohammed Islam ◽  
Fatima Jahra ◽  
Ron Ryan ◽  
Lee Hedd

State of the art CFD capabilities has enabled the accurate prediction of forces and moments on the propeller as well as on the pod-strut body due to small to moderate azimuthing angles. The capability of CFD to predict the hydrodynamics at extreme azimuthing angles is yet to be demonstrated. The aim of this research is to develop a simulation capability to capture most of the dynamics of podded propulsion systems in regular to extreme operating conditions. The numerical methodologies to evaluate the hydrodynamic characteristics of podded propulsors in puller configurations in extremely oblique inflow and highly loaded condition in open water and the associated results are presented in this paper. A numerical study is carried out to predict the hydrodynamic forces of a podded propulsor unit in various extreme static azimuthing conditions. An unsteady Reynolds-Averaged Navier Stokes (RANS) solver is used to predict the propulsive performance of the podded propulsor system in puller configuration using both steady and unsteady state solutions. To obtain insight into the reliability and accuracy of the results, grid dependency studies are conducted for a podded propulsor in straight-ahead condition. RANS solver simulation technique is first validated against measurements of a puller podded propulsor in straight ahead condition for multiple loading scenarios. The propeller thrust and torque as well as the forces and moments of the pod unit in the three coordinate directions in straight-ahead condition and at static azimuthing angles in the range of −180° to 180° at advance coefficient of 0.20 are then compared with that of the measurements. Additionally, the velocity and pressure distribution on and around the pod-strut-propeller bodies are presented as derived from the RANS predictions. Analysis demonstrates that the RANS solver can predict the performance coefficients of the podded propulsor in extreme azimuthing and in the highly loaded conditions within the same level of accuracy of the same order of magnitude of the experimental results.


2010 ◽  
Vol 47 (01) ◽  
pp. 47-58
Author(s):  
Mohammed F. Islam ◽  
Brian Veitch ◽  
Pengfei Liu ◽  
Ayhan Akinturk

This paper presents results of an experimental study on the effect of gap distance on propulsive characteristics of puller and pusher podded propulsors in straight-ahead and static azimuthing open-water conditions. The gap distance is the axial distance between the rotating (propeller) and stationary (pod) parts of a podded propulsor. The propeller thrust and torque, unit forces, and moments in the three-coordinate directions of a model podded unit were measured using a custom-designed pod dynamometer in various operating conditions. The model propulsor was tested at the gap distances of 0.3%, 1%, and 2% of propeller diameter for a range of advance coefficients combined with the range of static azimuthing angles from +20_ to 20_ with a 10_ increment. The tests were conducted both in puller and pusher configurations in the same loading and azimuthing conditions. In the puller configuration, the gap distance did not have any noticeable effect on propeller torque in straight course condition, but had an effect in azimuthing conditions. The propeller thrust and efficiency were also influenced by the change of gap distance, and the effects were more pronounced at high azimuthing angles and high advance coefficients. For pusher configuration, however, the gap distance did not affect the propeller performance characteristics in straight-ahead and azimuthing conditions. Both in straight course and azimuthing conditions, the unit thrust and efficiency were not influenced by the gap distance in either puller or pusher configurations. The gap distance had a noticeable effect on unit transverse force and steering moment both in puller and pusher configurations, and both in straight course


Author(s):  
Minh Tran ◽  
Jonathan Binns ◽  
Shuhong Chai ◽  
Alexander L Forrest ◽  
Hung Nguyen

This article presents the open water propeller characteristics and the four-quadrant propeller models as applied to a torpedo-shaped underwater vehicle. A series of experiments with a Gavia autonomous underwater vehicle propeller were conducted in the towing tank using a rotor testing apparatus. The purpose of these tests was to measure the propeller thrust and torque under varying flow conditions and then to be used as the basis of the developed propeller models. These mathematical models were constructed using two regression models, a polynomial and a Fourier series. Model coefficients were derived using the method of least squares and a comparison analysis was also conducted to test the robustness of the methodology. Results show that the Fourier series models were able to produce a reasonable and accurate approximation of thrust and torque coefficients with a small number of parameters in the examined condition of this study. The obtained four-quadrant open water characteristics of the autonomous underwater vehicle propeller model would be utilised to improve the system mathematical model for more accurate simulation and controller design, to compare the autonomous underwater vehicle performance equipped with different propulsion units, and to validate computational fluid dynamic results.


1970 ◽  
Vol 4 (2) ◽  
pp. 57-71 ◽  
Author(s):  
Mohammed F Islam ◽  
Brian Veitch ◽  
Pengfei Liu

This paper describes a research program on podded propulsors that combines parallel developments in numerical prediction methods and experimental evaluation. Amongst the hydrodynamic issues that have been identified and addressed are questions regarding the effects of hub taper angle, pod-strut configurations, static azimuthing conditions, pod-strut interactions, gap pressure, pod gap and pod-strut geometry on podded propulsors' performance. On the experimental side, a pod dynamometer system consisting of a six-component global dynamometer and a three-component pod dynamometer were designed, manufactured and used to perform measurements on propeller thrust and torque and unit forces and moments in the three orthogonal directions in pusher and puller configurations in open water conditions. Four propellers with the same blade sections but different hub taper angles were designed and used to fit with eighteen pod-strut shells. Among the shells, two pod-strut models were based on the average dimensions of commercial pods and used to study the hub angle, pod configuration, pod gap, gap pressure and azimuthing conditions effect on propulsive performance. The other sixteen pods were designed and manufactured to study the effect of five geometric parameters on hydrodynamic performance using a design of experiments technique. In another study, an experimental method was implemented in a cavitation tunnel to evaluate the wake/strut interaction of a podded propeller model. All of the measurements showed consistency.DOI: http://dx.doi.org/10.3329/jname.v4i2.989 Journal of Naval Architecture and Marine Engineering Vol.4(2) 2007 p 57-71


2015 ◽  
Author(s):  
Mohammed Islam ◽  
Fatima Jahra ◽  
Michael Doucet

Mesh and domain optimization strategies for a RANS solver to accurately estimate the open water propulsive characteristics of fixed pitch propellers are proposed based on examining the effect of different mesh and computation domain parameters. The optimized mesh and domain size parameters were selected using Design of Experiments (DoE) methods enabling simulations to be carried out in a limited memory environment, and in a timely manner; without compromising the accuracy of results. A Reynolds-Averaged Navier Stokes solver is used to predict the propulsive performance of a fixed pitch propeller. The predicted thrust and torque for the propeller were compared to the corresponding measurements. A total of six meshing parameters were selected that could affect the computational results of propeller open water performance. A two-level fractional factorial design was used to screen out parameters that do not significantly contribute to explaining the dependent parameters: namely simulation time, propeller thrust and propeller torque. A total of 32 simulations were carried out only to find out that the selected six meshing parameters were significant in defining the response parameters. Optimum values of each of the input parameters were obtained for the DOE technique and additional simulations were run with those parameters. The simulation results were validated using open water experimental results of the same propeller. It was found that with the optimized meshing arrangement, the propeller opens simulation time was reduced by at least a factor of 6 as compared to the generally popular meshing arrangement. Also, the accuracy of propulsive characteristics was improved by up to 50% as compared to published simulation results. The methodologies presented in this paper can be similarly applied to other simulations such as calm water ship resistance, ship propulsion to systematically derive the optimized meshing arrangement for simulations with minimal simulation time and maximum accuracy. This investigation was carried out using STAR-CCM+, a commercial CFD package; however the findings can be applied to any RANS solver.


1989 ◽  
Vol 26 (03) ◽  
pp. 192-201 ◽  
Author(s):  
Neil Bose ◽  
Peter S. K. Lai

Open-water experiments were done on a model of a cycloidal-type propeller with a trochoidal blade motion. This propeller had three blades with an aspect ratio of 10. These experiments included the measurement of thrust and torque of the propeller over a range of advance ratios. Tests were done for forward and reverse operation, and at zero speed (the bollard pull condition). Results from these tests are presented and compared with: a multiple stream-tube theoretical prediction of the performance of the propeller; and a prediction of the performance of a single blade of the propeller, oscillating in heave and pitch, using unsteady small-amplitude hydrofoil theory with corrections for finite amplitude motion, finite span, and frictional drag. At present, neither of these theories gives a completely accurate prediction of propeller performance over the whole range of advance ratios, but a combination of these approaches, with an allowance for dynamic stall of the blades, should lead to a reliable simple theory for overall performance prediction. Application of a propeller of this type to a small ship is discussed. The aim of the design is to produce a lightly loaded propeller with a high efficiency of propulsion.


1998 ◽  
Vol 42 (01) ◽  
pp. 15-32 ◽  
Author(s):  
Paul Brandner ◽  
Martin Renilson

To assist in predicting the performance of omni-directional propelled vehicles a series of experiments has been conducted to measure the interaction between two closely spaced ductedazimuthing thrusters. The thrusters were tested below a shallow draft ground board in a towing tank at a spacing of approximately 2 propeller diameters. Measurements were made of forces acting on a single thruster for a range of operating conditions and similarly on two thrusters for a range of relative positions. The results show that forces from the trailing thruster are heavily affected by interaction, particularly due to impingement of the race from the leading thruster, where as forces from the leading thruster remain essentially unaffected despite its proximity to the trailing thruster. A semi-empirical mathematical model suitable for simulation of omni-directional vehicle dynamics is presented. The model is based on the trajectory of the race from the leading thruster derived from momentum considerations with additional empirical relations to account for other more minor flow effects. Comparison of the predicted and measured results show satisfactory agreement.


Author(s):  
David Marten ◽  
Alessandro Bianchini ◽  
Georgios Pechlivanoglou ◽  
Francesco Balduzzi ◽  
Christian Navid Nayeri ◽  
...  

Interest in vertical-axis wind turbines (VAWTs) is experiencing a renaissance after most major research projects came to a standstill in the mid 90’s, in favour of conventional horizontal-axis turbines (HAWTs). Nowadays, the inherent advantages of the VAWT concept, especially in the Darrieus configuration, may outweigh their disadvantages in specific applications, like the urban context or floating platforms. To enable these concepts further, efficient, accurate, and robust aerodynamic prediction tools and design guidelines are needed for VAWTs, for which low-order simulation methods have not reached yet a maturity comparable to that of the Blade Element Momentum Theory for HAWTs’ applications. The two computationally efficient methods that are presently capable of capturing the unsteady aerodynamics of Darrieus turbines are the Double Multiple Streamtubes (DMS) Theory, based on momentum balances, and the Lifting Line Theory (LLT) coupled to a free vortex wake model. Both methods make use of tabulated lift and drag coefficients to compute the blade forces. Since the incidence angles range experienced by a VAWT blade is much wider than that of a HAWT blade, the accuracy of polars in describing the stall region and the transition towards the “thin plate like” behaviour has a large effect on simulation results. This paper will demonstrate the importance of stall and post-stall data handling in the performance estimation of Darrieus VAWTs. Using validated CFD simulations as a baseline, comparisons are provided for a blade in VAWT-like motion based on a DMS and a LLT code employing three sets of post-stall data obtained from a wind tunnel campaign, XFoil predictions extrapolated with the Viterna-Corrigan model and a combination of them. The polar extrapolation influence on quasi-steady operating conditions is shown and azimuthal variations of thrust and torque are compared for exemplary tip-speed ratios (TSRs). In addition, the major relevance of a proper dynamic stall model into both simulation methods is highlighted and discussed.


Sign in / Sign up

Export Citation Format

Share Document