scholarly journals A COMPARISON OF EXPERIMENTAL AND NUMERICAL BEHAVIOUR CHARACTERISTICS OF A SHIP ENTERING A LOCK USING BENCHMARK TEST DATA

2021 ◽  
Vol 158 (A2) ◽  
Author(s):  
M Vantorre ◽  
M Candries ◽  
G Delefortrie ◽  
K Eloot ◽  
J Verwilligen ◽  
...  

This paper discusses several papers that were presented at the 3rd International Conference on Ship Manoeuvring in Shallow and Confined Water, which had a non-exclusive focus on Ship Behaviour in Locks. For this conference, experimental model test data obtained at Flanders Hydraulics Research had been made public and researchers were encouraged to compare numerical with experimental results [1]. Data of benchmark tests carried out both with self- propelled and captive models were used by researchers for comparison with various numerical tools. The objective of this paper is to give a selected overview of how accurately numerical tools are presently able to predict the hydrodynamic forces that occur on ships approaching locks. Based on this, the paper concludes that experiments and numerical tools complement each other.

Author(s):  
Amal C. Phadke ◽  
Alaa M. Mansour ◽  
Edward W. Huang

Sophisticated frequency and time domain software tools are available for the global performance analysis of Tension Leg Platforms (TLP). Time-domain tools allow realistic simulation of the response of TLP systems compared to frequency-domain tools, but they are generally computationally intensive. Rapid advances in computer technology have made it possible to employ sophisticated time-domain techniques as primary tools for the global performance analysis of TLP systems. However, response characteristics such as higher-order tendon response, wave-runup, airgap etc. cannot still be accurately predicted using the available numerical tools. Wave basin model tests, therefore, are indispensable to designers for estimating responses that cannot be reliably predicted. At the same time, using model tests alone as an analysis tool is not practical due to large number of design cases typically defined in global performance analysis. It is necessary to verify and calibrate numerical tools using model test data prior to their application in global performance analysis. This paper describes a methodology for calibrating and correlating predicted response from time-domain software tools against wave basin model tests. The application of correlation data in conjunction with predicted response to obtain various design quantities of interest has been investigated. Discussion for determination of model test correlated design maximum/minimum tendon tension, higher-order tendon tension response, and incorporation of vortex induced motion is presented.


2012 ◽  
Author(s):  
Dominic Piro ◽  
Kyle A. Brucker ◽  
Thomas T. O'Shea ◽  
Donald Wyatt ◽  
Douglas Dommermuth ◽  
...  

Author(s):  
Charles Lefevre ◽  
Yiannis Constantinides ◽  
Jang Whan Kim ◽  
Mike Henneke ◽  
Robert Gordon ◽  
...  

Vortex-Induced Motion (VIM), which occurs as a consequence of exposure to strong current such as Loop Current eddies in the Gulf of Mexico, is one of the critical factors in the design of the mooring and riser systems for deepwater offshore structures such as Spars and multi-column Deep Draft Floaters (DDFs). The VIM response can have a significant impact on the fatigue life of mooring and riser components. In particular, Steel Catenary Risers (SCRs) suspended from the floater can be sensitive to VIM-induced fatigue at their mudline touchdown points. Industry currently relies on scaled model testing to determine VIM for design. However, scaled model tests are limited in their ability to represent VIM for the full scale structure since they are generally not able to represent the full scale Reynolds number and also cannot fully represent waves effects, nonlinear mooring system behavior or sheared and unsteady currents. The use of Computational Fluid Dynamics (CFD) to simulate VIM can more realistically represent the full scale Reynolds number, waves effects, mooring system, and ocean currents than scaled physical model tests. This paper describes a set of VIM CFD simulations for a Spar hard tank with appurtenances and their comparison against a high quality scaled model test. The test data showed considerable sensitivity to heading angle relative to the incident flow as well as to reduced velocity. The simulated VIM-induced sway motion was compared against the model test data for different reduced velocities (Vm) and Spar headings. Agreement between CFD and model test VIM-induced sway motion was within 9% over the full range of Vm and headings. Use of the Improved Delayed Detached Eddy Simulation (IDDES, Shur et al 2008) turbulence model gives the best agreement with the model test measurements. Guidelines are provided for meshing and time step/solver setting selection.


2021 ◽  
Author(s):  
Hyunchul Jang ◽  
Dae-Hyun Kim ◽  
Madhusuden Agrawal ◽  
Sebastien Loubeyre ◽  
Dongwhan Lee ◽  
...  

Abstract Platform Vortex Induced Motion (VIM) is an important cause of fatigue damage on risers and mooring lines connected to deep-draft semi-submersible floating platforms. The VIM design criteria have been typically obtained from towing tank model testing. Recently, computational fluid dynamics (CFD) analysis has been used to assess the VIM response and to augment the understanding of physical model test results. A joint industry effort has been conducted for developing and verifying a CFD modeling practice for the semi-submersible VIM through a working group of the Reproducible Offshore CFD JIP. The objectives of the working group are to write a CFD modeling practice document based on existing practices validated for model test data, and to verify the written practice by blind calculations with five CFD practitioners acting as verifiers. This paper presents the working group’s verification process, consisting of two stages. In the initial verification stage, the verifiers independently performed free-decay tests for 3-DOF motions (surge, sway, yaw) to check if the mechanical system in the CFD model is the same as in the benchmark test. Additionally, VIM simulations were conducted at two current headings with a reduced velocity within the lock-in range, where large sway motion responses are expected,. In the final verification stage, the verifiers performed a complete set of test cases with small revisions of their CFD models based on the results from the initial verification. The VIM responses from these blind calculations are presented, showing close agreement with the model test data.


2021 ◽  
pp. 1-31
Author(s):  
Xueliang Lu ◽  
Luis San Andres ◽  
Jing Yang

Abstract Seals in multiple phase rotordynamic pumps must operate without compromising system efficiency and stability. Both field operation and laboratory experiments show that seals supplied with a gas in liquid mixture (bubbly flow) can produce rotordynamic instability and excessive rotor vibrations. This paper advances a nonhomogeneous bulk flow model (NHBFM) for the prediction of the leakage and dynamic force coefficients of uniform clearance annular seals lubricated with gas in liquid mixtures. Compared to a homogeneous BFM (HBFM), the current model includes diffusion coefficients in the momentum transport equations and a field equation for the transport of the gas volume fraction (GVF). Published experimental leakage and dynamic force coefficients for two seals supplied with an air in oil mixture whose GVF varies from 0 (pure liquid) to 20% serve to validate the novel model as well as to benchmark it against predictions from a HBFM. The first seal withstands a large pressure drop (~ 38 bar) and the shaft speed equals 7.5 krpm. The second seal restricts a small pressure drop (1.6 bar) as the shaft turns at 3.5 krpm. The first seal is typical as a balance piston whereas the second seal is found as a neck-ring seal in an impeller. For the high pressure seal and inlet GVF = 0.1, the flow is mostly homogeneous as the maximum diffusion velocity at the seal exit plane is just ~0.1% of the liquid flow velocity. Thus, both the NHBFM and HBFM predict similar flow fields, leakage (mass flow rate) and drag torque. The difference between the predicted leakage and measurement is less than 5%. The NHBFM direct stiffness (K) agrees with the experimental results and reduces faster with inlet GVF than the HBFM K. Both direct damping (C) and cross-coupled stiffness (k) increase with inlet GVF < 0.1.Compared to the test data, the two models generally under predict C and k by ~ 25%. Both models deliver a whirl frequency ratio (fw) ~ 0.3 for the pure liquid seal, hence closely matching the test data. fw raises to ~0.35 as the GVF approaches 0.1. For the low pressure seal the flow is laminar, the experimental results and both NHBFM and HBFM predict a null direct stiffness (K). At an inlet GVF = 0.2, the NHBFM predicted added mass (M) is ~30 % below the experimental result while the HBFM predicts a null M. C and k predicted by both models are within the uncertainty of the experimental results. For operation with either a pure liquid or a mixture (GVF = 0.2), both models deliver fw = 0.5 and equal to the experimental finding. The comparisons of predictions against experimental data demonstrate the NHBFM offers a marked improvement, in particular for the direct stiffness (K). The predictions reveal the fluid flow maintains the homogeneous character known at the inlet condition.


Author(s):  
Pavel Burakovskiy

This paper studies behavior of ship in head waves, when her bow dips under water, which leads to hydrodynamic forces and moments to be assessed. This paper presents model test data obtained in the test tank on the model of ship bow (hydrodynamic loads on forecastle deck during wave capture) as well as updates the coefficient of flow around the bow. The study also shows that bulwark has negative effect upon safety in these conditions because it significantly increases hydrodynamic loads on the deck.


Author(s):  
Mariusz Węgrzyn ◽  
Ernest Jamro ◽  
Agnieszka Dąbrowska-Boruch ◽  
Kazimierz Wiatr

This paper describes a new optimization methodology of testing vector sets reduction for testing of soft-processor cores and their individual blocks. The deterministic test vectors both for whole core and its individual blocks are investigated that significantly reduce the testing time and amount of test data that needs to be stored on the tester memory. The processor executes an assembler program which together with determined testing vectors ex-ercise its functionality. The new BIST methodology applicable at industrial testing of processor cores, diagnostics and dynamic reconfiguration of FPGA is proposed. This novel methodology combined with dynamic reconfiguration of FPGAs can be profitable applied for missions-critical i.e. FPGAs operate in space, or other difficult condition where are explore on radiation. Experimental results demonstrate that the proposed approach reduces many times testing time.


Sign in / Sign up

Export Citation Format

Share Document