NUMERICAL PREDICTION OF VERTICAL SHIP MOTIONS AND ADDED RESISTANCE

Author(s):  
F Cakici ◽  
E Kahramanoglu ◽  
A D Alkan

Along with the development of computer technology, the capability of Computational Fluid Dynamics (CFD) to conduct ‘virtual computer experiments’ has increased. CFD tools have become the most important tools for researchers to deal with several complex problems. In this study, the viscous approach called URANS (Unsteady Reynolds Averaged Navier-Stokes) which has a fully non-linear base has been used to solve the vertical ship motions and added resistance problems in head waves. In the solution strategy, the FVM (Finite Volume Method) is used that enables numerical discretization. The ship model DTMB 5512 has been chosen for a series of computational studies at Fn=0.41 representing a high speed case. Firstly, by using CFD tools the TF (Transfer Function) graphs for the coupled heave- pitch motions in deep water have been generated and then comparisons have been made with IIHR (Iowa Institute of Hydraulic Research) experimental results and ordinary strip theory outputs. In the latter step, TF graphs of added resistance for deep water have been generated by using CFD and comparisons have been made only with strip theory.

2017 ◽  
Vol 159 (A4) ◽  
Author(s):  
F Cakici ◽  
E Kahramanoglu ◽  
A D Alkan

Along with the development of computer technology, the capability of Computational Fluid Dynamics (CFD) to conduct ‘virtual computer experiments’ has increased. CFD tools have become the most important tools for researchers to deal with several complex problems. In this study, the viscous approach called URANS (Unsteady Reynolds Averaged Navier-Stokes) which has a fully non-linear base has been used to solve the vertical ship motions and added resistance problems in head waves. In the solution strategy, the FVM (Finite Volume Method) is used that enables numerical discretization. The ship model DTMB 5512 has been chosen for a series of computational studies at Fn=0.41 representing a high speed case. Firstly, by using CFD tools the TF (Transfer Function) graphs for the coupled heave-pitch motions in deep water have been generated and then comparisons have been made with IIHR (Iowa Institute of Hydraulic Research) experimental results and ordinary strip theory outputs. In the latter step, TF graphs of added resistance for deep water have been generated by using CFD and comparisons have been made only with strip theory.


Prediction of ship motions and added resistance is an importance step in the ship design phases and considerable researches are related to this subject. It plays a unique role in main seakeeping characteristics such as maximum ship speed in sea waves, voluntary and involuntary speed reduction due to wave forces and added resistance as well as ship safety and ship routing, which affect transportation time, fuel consumption and total cost. The effects of environmental condition on calculation results is analyzed by performing some calculation with different wave parameter of JONSWAP spectra. The calculation results for the DTMB vessel are examined by the comparisons with experimental data carried out at Ship Design and Research Centre's towing tank in Poland, and show good agreement, which demonstrates the ability of the present method to assess seakeeping characteristics at the initial ship design phases. The calculation is performed by using the commercial software MAXSURF.


Author(s):  
Heinrich Söding ◽  
Vladimir Shigunov ◽  
Thomas E. Schellin ◽  
Ould el Moctar

A new Rankine panel method and an extended Reynolds-Averaged Navier–Stokes (RANS) solver were employed to predict added resistance in head waves at different Froude numbers of a Wigley hull, a large tanker, and a modern containership. The frequency domain panel method, using Rankine sources as basic flow potentials, accounts for the interaction of the linear periodic wave-induced flow with the nonlinear steady flow caused by the ship's forward speed in calm water, including nonlinear free surface conditions and dynamic squat. Added resistance in waves is obtained by the pressure integration method. The time domain RANS solver, based on a finite volume method, is extended to solve the nonlinear equations of the rigid body six-degrees-of-freedom ship motions. The favorable comparison of the panel and RANS predictions demonstrated that the Rankine method is suitable to efficiently obtain reliable predictions of added resistance of ships in waves. Comparable model test predictions correlated less favorably, although the overall agreement was felt to be acceptable, considering the difficulties associated with the procedures to obtain accurate measurements.


Author(s):  
Hao Guo ◽  
Decheng Wan

Abstract Estimating added resistance and motions of a ship in waves are essential to predict fuel consumption and speed loss. The added resistance and motions of the 3600 TEU KRISO container ship (KCS) in regular head waves under different wavelengths are investigated using Reynolds-Averaged Navier-Stokes (RANS) method. Volume of Fluid (VOF) method is applied to capture the free surface. The in-house computational fluid dynamics solver, naoe-FOAM-SJTU, is used to compute the added resistance and motions of KCS in regular head waves. Firstly, the first-order Stokes waves in deep water are adopted and generated in naoe-FOAM-SJTU as a numerical wave tank. Secondly, it is presented that the KCS with a Froude number of 0.261 advances in these waves. Regular wave conditions with a wide range of wavelength (0.65 < λ/L < 1.95) are considered. The variations of resistance, pitch and heave show good agreement with experimental results. To investigate nonlinear behaviors of predicted results, Fast Fourier Transform (FFT) is applied to analyze the results of resistance, heave and pitch with in head wave (μ = 180°). KCS with and without motions is also compared to investigate the relationship between components of resistance and wavelengths. The results of added resistances show that the added resistance of KCS is mainly induced by ship diffraction in short waves. The wave diffraction is not affected by wave frequency. In addition, CFD can accurately calculate the problem on added resistance and ship motions.


2000 ◽  
Vol 44 (03) ◽  
pp. 170-185
Author(s):  
Hideo Orihara ◽  
Hideaki Miyata

A new simulation method based on computational fluid dynamics (CFD) is developed for a semiplaning boat with a transom stern in unsteady motion. The time-dependent Reynolds-averaged Navier-Stokes (RANS) equation is discretized by the finite-volume method and solved by the MAC-type solution algorithm, The free-surface treatment in this study is based on the density function method. The motion of the boat is simultaneously solved by combining the equation of the motion of the boat with the flow computation, and the effect of the boat motion is implemented by the moving grid method in the flow computation. Simulations for two types of practical high-speed boats are performed in the Froude number range from 0.5 to 1.0 and the results are compared with experimental ones. It is demonstrated that this method can simulate both the flow about the boat and the running attitude in free-to-run condition with a sufficient degree of accuracy and that it can be used as an effective tool for the development of hull form of practical high-speed boats.


Author(s):  
Xiaoxu Du ◽  
Huan Wang

The successful operation of an Autonomous Underwater Vehicle (AUV) requires the capability to return to a dock. A number of underwater docking technologies have been proposed and tested in the past. The docking allows the AUV to recharge its batteries, download data and upload new instructions, which is helpful to improve the working time and efficiency. During the underwater docking process, unsteady hydrodynamic interference occurs between the docking device and an AUV. To ensure a successful docking, it is very important that the underwater docking hydrodynamics of AUV is understood. In this paper, numerical simulations based on the computational fluid dynamics (CFD) solutions were carried out for a 1.85m long AUV with maximum 0.2 m in diameter during the docking process. The two-dimensional AUV model without fin and rudder was used in the simulation. The mathematical model based on the Reynolds-averaged Navier-Stokes (RANS) equations was established. The finite volume method (FVM) and the dynamic structured mesh technique were used. SIMPLE algorithm and the k-ε turbulence model in the Descartes coordinates were also adopted. The hydrodynamics characteristics of different docking states were analyzed, such as the different docking velocity, the docking device including baffle or not. The drag coefficients of AUV in the process of docking were computed for various docking conditions, i.e., the AUV moving into the docking in the speed of 1m/s, 2m/s, 5m/s. The results indicate that the drag coefficient increases slowly in the process of AUV getting close to the docking device. When the AUV moves into the docking device, the drag coefficient increases rapidly. Then the drag coefficient decreases rapidly. The drag coefficient decreases with the increase of velocity when AUV enters the docking device. It was also found that the drag coefficient can be effectively reduced by dislodging the baffle of docking device.


Author(s):  
Merouane Habib ◽  
Senouci Mohammed

In this paper, we investigate the no-reacting swirling flow by using the numerical simulation based to the unsteady Reynolds-averaged Navier-Stokes approach. The numerical simulation was realized by using a computational fluid dynamics CFD code. The governing equations are solved by using the finite volume method with two classical models of turbulence K-epsilon and Shear Stress K-ω. The objective of this paper is therefore to evaluate the performance of the two models in predicting the recirculation zones in a swirled turbulent flow. The current models are validated by comparing the numerical results of the axial, radial and tangential velocities to the experimental data from literature.


2006 ◽  
Vol 129 (1) ◽  
pp. 39-47 ◽  
Author(s):  
Thomas E. Schellin ◽  
Ould el Moctar

We present a numerical procedure to predict impact-related wave-induced (slamming) loads on ships. The procedure was applied to predict slamming loads on two ships that feature a flared bow with a pronounced bulb, hull shapes typical of modern offshore supply vessels. The procedure used a chain of seakeeping codes. First, a linear Green function panel code computed ship responses in unit amplitude regular waves. Ship speed, wave frequency, and wave heading were systematically varied to cover all possible combinations likely to cause slamming. Regular design waves were selected on the basis of maximum magnitudes of relative normal velocity between ship critical areas and wave, averaged over the critical areas. Second, a nonlinear strip theory seakeeping code determined ship motions under design wave conditions, thereby accounting for the nonlinear pressure distribution up to the wave contour and the frequency dependence of the radiation forces (memory effect). Third, these nonlinearly computed ship motions constituted part of the input for a Reynolds-averaged Navier–Stokes equations code that was used to obtain slamming loads. Favorable comparison with available model test data validated the procedure and demonstrated its capability to predict slamming loads suitable for design of ship structures.


Sign in / Sign up

Export Citation Format

Share Document