scholarly journals Analysis of GPU Power Consumption Using Internal Sensors

Author(s):  
Mariza Ferro ◽  
André Yokoyama ◽  
Vinicius Klõh ◽  
Gabrieli Silva ◽  
Rodrigo Gandra ◽  
...  

GPUs has been widely used in scientific computing, as by offering exceptional performance as by power-efficient hardware. Its position established in high-performance and scientific computing communities has increased the urgency of understanding the power cost of GPU usage in accurate measurements. For this, the use of internal sensors are extremely important. In this work, we employ the GPU sensors to obtain high-resolution power profiles of real and benchmark applications. We wrote our own tools to query the sensors of two NVIDIA GPUs from different generations and compare the accuracy of them. Also, we compare the power profile of GPU with CPU using IPMItool.

Nanophotonics ◽  
2020 ◽  
Vol 10 (2) ◽  
pp. 937-945
Author(s):  
Ruihuan Zhang ◽  
Yu He ◽  
Yong Zhang ◽  
Shaohua An ◽  
Qingming Zhu ◽  
...  

AbstractUltracompact and low-power-consumption optical switches are desired for high-performance telecommunication networks and data centers. Here, we demonstrate an on-chip power-efficient 2 × 2 thermo-optic switch unit by using a suspended photonic crystal nanobeam structure. A submilliwatt switching power of 0.15 mW is obtained with a tuning efficiency of 7.71 nm/mW in a compact footprint of 60 μm × 16 μm. The bandwidth of the switch is properly designed for a four-level pulse amplitude modulation signal with a 124 Gb/s raw data rate. To the best of our knowledge, the proposed switch is the most power-efficient resonator-based thermo-optic switch unit with the highest tuning efficiency and data ever reported.


2013 ◽  
Vol 22 (07) ◽  
pp. 1350062 ◽  
Author(s):  
AJAY KUMAR SINGH ◽  
MAH MENG SEONG ◽  
C. M. R. PRABHU

This paper presents a new power efficient single ended sense amplifier (SA). The proposed circuit is based on the direct current voltage conversion technique. It has been simulated using Microwind3 and DSCH3 tools (advanced BSIM 4 level) for 90 nm CMOS technology in terms of power consumption, sense time and results were compared to other circuits. The proposed SA circuit consumes more than 50% less power and gives 90% faster sensing speed compared to other circuits. The lower power consumption is due to lower leakage current, lower voltage drop on bit-line and faster speed is due to positive feedback of the circuit. The proposed circuit is more robust against any process and temperature variation.


With the crisis of power across the globe, green communication and power-efficient devices are getting more and more attention. This work emphasis about the implementation of Control Unit (CU) circuit on FPGA kit. In this project, power consumption of CU circuit is analyzed by changing the different Input/Output (I/O) standards of FPGA. This project is implemented on Xilinx 14.1 tool and the power consumption on CU is calculated with X Power Analyzer tool on 28-Nano-Meter (nm) Artix-7 Field Programmable Gate Array (FPGA). Out of different I/O standards, CU circuit is most power efficient with LVCMOS I/O standard on Artix-7 FPGA


2020 ◽  
Vol 45 (2) ◽  
pp. 489-499 ◽  
Author(s):  
Wei Guo ◽  
Shengchun Piao ◽  
T. C. Yang ◽  
Junyuan Guo ◽  
Kashif Iqbal

Sign in / Sign up

Export Citation Format

Share Document