scholarly journals Microwave Absorbing and Magnetic Properties of the Polyaniline-Co0.7Cr0.1Zn0.2Fe2O4 Composites

2016 ◽  
Vol 22 (3) ◽  
Author(s):  
Fanling MENG ◽  
Xiao WANG ◽  
Dan JIANG ◽  
Ruiting MA
2021 ◽  
Vol 21 (1) ◽  
pp. 27
Author(s):  
Ardita Septiani ◽  
Novrita Idayanti ◽  
Tony Kristiantoro ◽  
Dedi Mada ◽  
Nadya Larasati Kartika ◽  
...  

This study aims to evaluate the structural, magnetic, and microwave absorbing properties at the X-band region of oxidized mill scales as by-product derived from a steel making process by means of a facile solid-state reaction. The oxidized mill scales were heated at 600 °C for 4 h followed by mixing with NiO. A calcination process took place at 900 °C and sintering process were conducted at 1260 °C with a milling process conducted in between the heating process. X-ray diffraction (XRD) and scanning electron microscope (SEM) equipped with energy dispersive spectrometer (EDS) were employed to evaluate the structural properties of the Ni-ferrites samples. Remacomp measurement were conducted to evaluate the magnetic properties and vector network analyzer (VNA) to measure its microwave properties. A single phase of NiFe2O4 was confirmed by XRD data. The site occupancies derived from the Rietveld refinement shows that the Ni:Fe:O ratio deviates from the 1:2:4 ratio as that suggests vacancies formed in the Ni2+ and Fe3+ that lowers the unit cell density to 5.08 g/cm3 that further confirmed by EDS measurement. The coercivity of 11 kOe is also higher than the bulk NiFe2O4¬ prepared by the chemical grade raw materials. The reflection data of the microwave properties at X-band of 8-12 GHz do not shows significant absorptions. This study suggests that the selected preparation method yields a single phase, however with the significant crystallographic defects and has less ‘soft’ magnetic properties compared to NiFe2O4 prepared using chemical grade by previous study.


2008 ◽  
Vol 456 (1-2) ◽  
pp. 452-455 ◽  
Author(s):  
Mingxun Yu ◽  
Xiangcheng Li ◽  
Rongzhou Gong ◽  
Yanfei He ◽  
Huahui He ◽  
...  

Author(s):  
Mashadi Sunandar

Nanocomposite of α-Fe/C was successfully synthesized by mechanical milling method. Analytical-grade of α-Fe and graphite powders with a purity of greater than 99% were mixed. The mixture was milled for 50 hours at room temperature using High Energy Milling (HEM). The refinement results of X-ray diffraction pattern shows that the α-Fe/C nanocomposite consists of 20 wt% Fe and 80 wt% C. The mechanical milling resulted in α-Fe/C powders with mean particle size ~900 nm. The image reveals the morphology of particle and the particles that exist is aggregates of fine grains. The magnetic properties of the particle α-Fe/C nanocomposite showed low coercivity and high remanent magnetization. The α-Fe/C nanocomposite has certain microwave absorber properties in the frequency range of 9 – 15 GHz, with the maximum reflection loss reaches -10 dB at 12 GHz and the absorption range under −4 dB is from 11.2 to 15.5 GHz with 2 mm thickness. The study concluded that the α-Fe/C nanocomposite shows good candidate materials for microwave absorbing materials applications. 


2016 ◽  
Vol 47 (5) ◽  
pp. 674-685 ◽  
Author(s):  
Maedeh Simayee ◽  
Majid Montazer

In the present work, polyester fabric with protective and magnetic properties is introduced using mixture of micro magnetic carbonyl iron powder and nano carbon black through pad-dry-cure method and sputter coating with aluminium (Al). This leads to X-band microwave absorbing properties as the great demand for protective garment. The morphology, static magnetic and X-band microwave absorbing properties of the treated fabrics were characterized by field emission scanning electron microscopy, vibrating sample magnetometer and vector network analyzer in the range of 8.2–12.4 GHz. Normal-angle X-ray diffraction was used to study the crystalline structure of treated PET fabric. Compared with the blank polyethylene terephthalate fabric without Al sputter coating, the presence of nano carbon black and carbonyl iron powder on the polyethylene terephthalate fabric sputter coated with aluminum exhibited higher microwave absorbing properties particularly in the primary range of 8.2–12.4 GHz. The results in the whole frequency range investigated were remarkable; however, the reflection loss was found to be lower than −5.9 dB in the entire frequency. The maximum reflection loss value was reached to −7.7 dB at the frequency of 8.2 GHz. Overall, the co-application of nano carbon black and carbonyl iron powders on the polyethylene terephthalate fabric opens up a new coating method for X-band microwave absorbing properties.


2017 ◽  
Vol 43 (9) ◽  
pp. 7346-7350 ◽  
Author(s):  
Ali Bahadur ◽  
Aamer Saeed ◽  
Shahid Iqbal ◽  
Muhammad Shoaib ◽  
Ijaz Ahmad ◽  
...  

2009 ◽  
Vol 52 (1) ◽  
pp. 227-231 ◽  
Author(s):  
XuChun Gui ◽  
KunLin Wang ◽  
JinQuan Wei ◽  
RuiTao Lü ◽  
QinKe Shu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document