scholarly journals Optimum Control Parameters During Machining of LM13 Aluminum Alloy Under Dry Electrical Discharge Machining (EDM) With A Modified Tool Design

2019 ◽  
Vol 25 (4) ◽  
pp. 407-412 ◽  
Author(s):  
Pragadish NAGARAJAN ◽  
Pradeep Kumar MURUGESAN ◽  
Elango NATARAJAN

Dry Electrical Discharge Machining (EDM) is considered as a green manufacturing process in which the liquid dielectric medium is replaced by a high velocity gas, which results improved process stability. A special tool design is adopted to find the optimum control parameters during machining of LM13 Aluminum alloy under dry EDM mode. The drilled and slotted cylindrical copper rod is used as a tool. Discharge current (I), voltage (V), pressure (P) and pulse on time (TON) are considered as varying input process parameters and duty factor and tool rotational speed are chosen at the fixed level. Taguchi L27 orthogonal array is used to design the experiment and the experiments are conducted accordingly. The experimental results are analyzed using Grey Relational Analysis to find the optimal combination of the process parameters. Also, ANOVA test is conducted to ensure the conformity of the simulation results. Pulse on time is found as the most significant parameter which is followed by voltage. Furthermore, the parameters with the highest relational grade (4 A, 200 μs, 60 V and 1.5 kPa) are used in experiment to validate the simulation results. The simulation and experimental results have a good agreement with less than 0.5 % error.

Machines ◽  
2020 ◽  
Vol 8 (1) ◽  
pp. 12 ◽  
Author(s):  
Angelos P. Markopoulos ◽  
Emmanouil-Lazaros Papazoglou ◽  
Panagiotis Karmiris-Obratański

Although electrical discharge machining (EDM) is one of the first established non-conventional machining processes, it still finds many applications in the modern industry, due to its capability of machining any electrical conductive material in complex geometries with high dimensional accuracy. The current study presents an experimental investigation of ED machining aluminum alloy Al5052. A full-scale experimental work was carried out, with the pulse current and pulse-on time being the varying machining parameters. The polishing and etching of the perpendicular plane of the machined surfaces was followed by observations and measurements in optical microscope. The material removal rate (MRR), the surface roughness (SR), the average white layer thickness (AWLT), and the heat affected zone (HAZ) micro-hardness were calculated. Through znalysis of variance (ANOVA), conclusions were drawn about the influence of machining conditions on the EDM performances. Finally, semi empirical correlations of MRR and AWLT with the machining parameters were calculated and proposed.


2012 ◽  
Vol 622-623 ◽  
pp. 19-24
Author(s):  
P. Balasubramanian ◽  
Thiyagarajan Senthilvelan

In this study, input parameters of Electrical Discharge machining (EDM) process have been optimised for two different materials EN-8 and Die steel-D3 were machined by using sintered copper electrode. Analysis of variance (ANOVA) was applied to study the influences of process parameters viz: - peak current, pulse on time, di-electric pressure and diameter of electrode on material removal rate (MRR), tool wear rate (TWR) and surface roughness (SR) for both materials. Response surface methodology (RSM) has been applied to optimise the multi responses in order to get maximum MRR, minimum TWR and minimum SR. Furthermore, mathematical model has been formulated to estimate the corresponding output responses for both work pieces. It has been observed that compared to EN 8 material, the MRR value is low and TWR is high for D3 material. However the SR value is marginally lower than obtained in EN8.R2 value is above 0.90 for both work pieces.


2015 ◽  
Vol 766-767 ◽  
pp. 902-907
Author(s):  
Bibin K. Tharian ◽  
B. Kuriachen ◽  
Josephkunju Paul ◽  
Paul V. Elson

Wire electrical discharge machining is one of the important non-traditional machining processes for machining difficult to machine materials. It involves the removal of material by the discrete electric discharges produced between the inter electrode gap of continuously moving wire electrode and the work piece. The ability to produce intricate profiles on materials irrespective of the mechanical properties made this process to be widely used in industries. The present study investigates the relationship of various process parameters in WEDM of AISI 202 stainless steel with brass electrode.The experiments were planned according to Taguchi’s L18 orthogonal array and experimental models were developed. The important process parameters identified for the present study were pulse on time, peak current, pulse off time, wire feed, wire tension, dielectric flushing pressure, servo feed and gap voltage. The surface roughness of the machined surface was measured as the process performance measure. Analysis of variance test has also been carried out to check the adequacy of the developed models and to identify the level of significance of each process parameters. In addition to the developed models, ABC optimization has been performed to identify the optimum parameter combination for minimum surface roughness and the obtained optimal process parameters are peak current 11 A, pulse on time 100 μs, pulse off time 49 μs, wire feed 4 m/min, wire tension 10 N, flushing pressure 12 kg/cm2, servo feed 2100 mm/min and set gap voltage 30 V. Finally the results were verified with the experimental results and found that they are in good agreement.


2014 ◽  
Vol 68 (1) ◽  
Author(s):  
Md. Ashikur Rahman Khan ◽  
M. M. Rahman

Electrical discharge machining (EDM) produces complex shapes and permits high-precision machining of any hard or difficult-to-cut materials. The performance characteristics such as surface roughness and microstructure of the machined face are influenced by numerous parameters. The selection of parameters becomes complicated. Thus, the surface roughness (Ra) and microstructure of the machined surface in EDM on Grade 6 titanium alloy are studied is this study. The experimental work is performed using copper as electrode material. The polarity of the electrode is maintained as negative. The process parameters taken into account in this study are peak current (Ip), pulse-on time (Ton), pulse-off time (Toff), and servo-voltage (Sv). A smooth surface finish is found at low pulse current, small on-time and high off-time. The servo-voltage affects the roughness diversely however, a finish surface is found at 80 V Sv. Craters, cracks and globules of debris are appeared in the microstructure of the machined part. The size and degree of craters as well as cracks increase with increasing in energy level. Low discharge energy yields an even surface. This approach helps in selecting proper process parameters resulting in economic EDM machining. 


Author(s):  
Neeraj Sharma ◽  
Tilak Raj ◽  
Kamal Kumar Jangra

NiTi is a shape memory alloy, mostly employed in cardiovascular stents, orthopedic implants, orthodontic wires, micro-electromechanical systems and so on. The effective and net shape machining of NiTi is very critical for excellent response of this material in medical and other applications. The present experimental work on wire electrical discharge machining process identifies the influence of process parameters that affect the cutting rate, dimensional shift and surface roughness while machining of porous nickel–titanium (Ni40Ti60) alloy. Porous Ni40Ti60 alloy was produced in-house using powder metallurgy technique. Response surface methodology–based central composite rotatable design has been used for the planning of experiments on wire electrical discharge machining. Empirical relations have been developed between the process parameters (pulse on-time, pulse off-time, servo voltage and peak current) and response variables. Desirability approach has been used for optimizing the three response variables simultaneously. Confirmation experiments were also performed at the optimized settings and reflect a close agreement between the predicted and experimental values (percentage error varies from −6.13% to +6.85%). Using wire electrical discharge machining, NiTi alloy can be machined easily and successfully in single-cutting operation, but after the first cut in wire electrical discharge machining, a surface projection appears on work surface which is the unmachined material on work surface.


2020 ◽  
Vol 979 ◽  
pp. 3-9
Author(s):  
G. Ramanan ◽  
M.Madhu Kiran Reddy ◽  
V. Manishankar

The quality of machining through process parameters on the responses in wire electrical discharge machining (WEDM) is studied. This paper discusses the optimization of parameters of a process in WEDM machining with the application of the desirability approach on the basis of response surface methodology (RSM). Pulse on time, servo speed rate, discharge current, and pulse off time have been considered as influential factors. The established experimental data of AA7075 aluminium reinforced with 9% of activated carbon composite to analyze the process parameter effects on responses, like material removal rate (MRR) and surface roughness (SR). After machining multiple regression analysis is used to find the interaction among the process parameters is obtained. The optimal parameters were found using the desirability optimization methodologies as 10.43mm3/min and 3.32μm respectively. The performance of the optimization test confirmed that the proposed method in this study effectively improves the performance of the WEDM process.


2016 ◽  
Vol 23 (2) ◽  
pp. 145-154
Author(s):  
V. Balasubramaniam ◽  
N. Baskar ◽  
Chinnaiyan Sathiya Narayanan

AbstractThis work presents the multiobjective optimization of machining parameters during the electrical discharge machining (EDM) of aluminum (Al)-silicon carbide (SiC) metal matrix composites (MMC). The process parameters considered were current, pulse on-time, dielectric flushing pressure, and SiC particles. A copper rod was used as an electrode. An Al-SiC MMC with Al 6061 as matrix and SiC particles having three different sizes (i.e., 15, 25, and 40 μm) were used as workpieces. The experiments were planned using design of experiments through response surface methodology (RSM). The mathematical models were developed to predict the better performance measures such as the material removal rate (MRR), electrode wear rate (EWR), surface roughness (SR), and cylindricity (CY). The desirability approach in RSM was performed for optimization. It was found that the MRR increases with increasing peak current, pulse on-time, flushing pressure, and particle size. The EDM parameters are to be analyzed for the MRR, EWR, SR, and CY. The best one is proposed for validation.


2017 ◽  
Vol 748 ◽  
pp. 207-211
Author(s):  
Balbir Singh ◽  
Sudhir Kumar ◽  
Jatinder Kumar

In this paper, response surface methodology (RSM) and non sorting genetic algorithm (NSGA-II) are used to optimize the multi-responses of electrical discharge machining of Aluminum Alloy 6061/10%SiCp composite. Experiment is performed to evaluates the effects of process parameters namely peak current, pulse on time, pulses off time and gap voltage on the responses material removal rate (MRR) and tool wear rate (TWR). The central composite rotatable design (CCRD) is utilized to design the experiment using RSM. Analysis of Variance (ANOVA) test is performed to validate model and to further establish the mathematical relation between process parameters and responses. Results are analyzed using ANOVA models. NSGA-II is used to optimize two conflicting responses i.e MRR and TWR. Finally results are validated by confirmatory experiment.


Author(s):  
Saman Fattahi ◽  
Hamid Baseri

Dry electrical discharge machining (EDM) is a modification of the oil EDM process in which the liquid dielectric is replaced by a gaseous dielectric. This study investigates the effects of different types of gas (air, nitrogen, and mixture of argon/air) on the machining characteristics of dry EDM of M35 workpiece material. A Taguchi L27 orthogonal array design was applied to investigate the effects of six control factors, including current, pulse on-time, duty factor, gas pressure, electrode rotational speed and specifically type of gas on machining responses, including material removal rate (MRR), surface roughness, and radial overcut. Also, the surface integrity was investigated in different dielectric mediums. Results show that the argon/air mixture can improve the MRR with respect to air and nitrogen. The best dimensional accuracy can be obtained by using nitrogen as the dielectric medium. Also, the machined surface with nitrogen has the fewest small drops and the microcracks in Aagon/air mixture is more than those air one. So, the argon/air mixture is the best dielectric with respect to nitrogen and air mediums for dry EDM of high-speed steel M35.


Author(s):  
T Vijaya Babu ◽  
B Subbaratnam

WEDM (Wire Electrical discharge machining) is a nonconventional machining processes used in complicated shapes with high accuracy which are not possible with other conventional methods .Stainless steel 304 is used in present experimental work. Experiments are completed using Taguchi’s method with L9 orthogonal array .The aim of this work is to optimize the WEDM process parameters by considering input parameters are pulse on time , pulse off time ,peak current and wire feed and experiments are conducted with help of input parameters at three levels and response output parameters are MRR (Material removal Rate) and Surface Roughness (SR).Setting of parameters using by Taguchi’s method.


Sign in / Sign up

Export Citation Format

Share Document