scholarly journals Fractional Calculus Control of Road Vehicle Lateral Stability after a Tire Blowout

Mechanika ◽  
2021 ◽  
Vol 27 (6) ◽  
pp. 475-482
Author(s):  
Bing lin LI ◽  
Li ZENG

The lateral stability control of the vehicle can avoid serious traffic accidents when it had a tire blowout during the operation. This article proposes a robust nonlinear control method for controlling vehicle lateral stability after a tire blowout. To be exact, a seven degree of freedom dynamic model of vehicle with modified Dugoff tire model is established. The yaw moment of vehicle is performed by differential braking once the tire blowout occurring. As for control strategy, taking the linear two degree of freedom vehicle model as the reference, using the deviation of yaw rate and the vehicle side angle between the actual value and the reference value as the controller input parameters, the fractional calculus theory is utilized for yaw moment controller which was investigated by regulating the brake moment of blowout vehicle for improving its stability. The results of computer simulation show that the design controller of fractional PID can more effectively enhance the blowout vehicle performance stability compared with the vehicle with the non control, PID control, no matter in straight road or curve road.

Author(s):  
Yiwen Huang ◽  
Yan Chen

This paper presents a novel vehicle lateral stability control method based on an estimated lateral stability region on the phase plane of vehicle yaw rate and lateral speed, which is obtained through a local linearization method. Since the estimated stability region does not only describe vehicle local stability, but also define the oversteering and understeering characteristics, the proposed control method can achieve both local stability and vehicle handling stability. Considering the irregular geometric shape of the estimated stability region, a stability analysis algorithm is designed to determine the distance between vehicle states and stability region boundaries. State estimation or measurement errors are also incorporated in the distance calculation. Based on the calculated shortest distance between vehicle states and stability boundaries, a direct yaw moment controller is designed to maintain vehicle states stay within the stability region. CarSim® and Simulink® co-simulation is applied to verify the control design through a cornering maneuver. The simulation results show that the proposed control method can make the vehicle stay within the stability region successfully and thus always operate in a safe manner.


2018 ◽  
Vol 2018 ◽  
pp. 1-11 ◽  
Author(s):  
Yaxiong Wang ◽  
Feng Kang ◽  
Taipeng Wang ◽  
Hongbin Ren

In-wheel motored powertrain on electric vehicles has more potential in maneuverability and active safety control. This paper investigates the longitudinal and lateral integrated control through the active front steering and yaw moment control systems considering the saturation characteristics of tire forces. To obtain the vehicle sideslip angle of mass center, the virtual lateral tire force sensors are designed based on the unscented Kalman filtering (UKF). And the sideslip angle is estimated by using the dynamics-based approaches. Moreover, based on the estimated vehicle state information, an upper level control system by using robust control theory is proposed to specify a desired yaw moment and correction front steering angle to work on the electric vehicles. The robustness of proposed algorithm is also analyzed. The wheel torques are distributed optimally by the wheel torque distribution control algorithm. Numerical simulation is carried out in Matlab/Simulink-Carsim cosimulation environment to demonstrate the effectiveness of the designed robust control algorithm for lateral stability control of in-wheel motored vehicle.


2011 ◽  
Vol 383-390 ◽  
pp. 1326-1332 ◽  
Author(s):  
Zhe Xu ◽  
Min Xiang Wei ◽  
Yang Wang ◽  
Jian Wei Wei

Vehicle running at high speed if affected by crosswind or steering handling may spin or drift out since the yaw moment produced is not big enough to stabilize it. In order to prevent these dangerous situations, a fuzzy direct yaw moment controller is designed in this paper, since it is simple and suitable for nonlinear system. This vehicle stability control system is based on model following control method. The side slip angle and yaw rate which indicate the vehicle’s stability and handling performance are chosen as the control variables. The response of the bicycle model is selected as the reference value. In order to evaluate the performance of the controller, simulations of lane change and J-turn maneuver are carried out. The results show that the stability and handling performance of the vehicle are improved.


Author(s):  
Narjes Ahmadian ◽  
Alireza Khosravi ◽  
Pouria Sarhadi

This paper presents a vehicle stability control method based on a multi-input multi-output (MIMO) model reference adaptive control (MRAC) strategy as an advanced driver assistance system (ADAS) to enhance the handling and yaw stability of the vehicle lateral dynamics. The corrective yaw moment and additive steering angle are generated using direct yaw moment control (DYC) and active front steering (AFS) at the upper control level in the hierarchical control algorithm. A nonlinear term is added to the conventional adaptive control laws to handle parametric uncertainties and disturbances. The desired yaw moment generated by the upper-level controller is converted to the brake forces and is distributed to the rear wheels by an optimal procedure at the lower-level. The major contribution of this study is the introduction of a nonlinear integrated adaptive control method based on a constraint optimization algorithm. To verify the effectiveness of the proposed control strategy, the nonlinear integrated adaptive controller, and linear time-varying MRAC are designed and used for comparison. Simulation results are performed for the J-turn and double lane change (DLC) manoeuvres at high speeds and low tyre-road friction coefficients. The desired performance of the proposed controller exhibited significant improvement compared to the conventional MRAC in terms of yaw rate tracking and handling of sideslip limitation.


Energies ◽  
2019 ◽  
Vol 12 (17) ◽  
pp. 3339 ◽  
Author(s):  
Zhao ◽  
Lu ◽  
Zhang

A Stackelberg game-based cooperative control strategy is proposed for enhancing the lateral stability of a four-wheel independently driving electric vehicle (FWID-EV). An upper‒lower double-layer hierarchical control structure is adopted for the design of a stability control strategy. The leader‒follower-based Stackelberg game theory (SGT) is introduced to model the interaction between two unequal active chassis control subsystems in the upper layer. In this model, the direct yaw-moment control (DYC) and the active four-wheel steering (AFWS) are treated as the leader and the follower, respectively, based on their natural characteristics. Then, in order to guarantee the efficiency and convergence of the proposed control strategy, a sequential quadratic programming (SQP) algorithm is employed to solve the task allocation problem among the distributed actuators in the lower layer. Also, a double-mode adaptive weight (DMAW)- adjusting mechanism is designed, considering the negative effect of DYC. The results of cosimulation with CarSim and Matlab/Simulink demonstrate that the proposed control strategy can effectively improve the lateral stability by properly coordinating the actions of AFWS and DYC.


2013 ◽  
Vol 278-280 ◽  
pp. 1510-1515 ◽  
Author(s):  
Jie Tian ◽  
Ya Qin Wang ◽  
Ning Chen

A new vehicle stability control method integrated direct yaw moment control (DYC) with active front wheel steering (AFS) was proposed. On the basis of the vehicle nonlinear model, vehicle stable domain was determined by the phase plane of sideslip angle and sideslip angular velocity. When the vehicle was outside the stable domain, DYC was firstly used to produce direct yaw moment, which can make vehicle inside the stable domain. Then AFS sliding mode control was used to make the sideslip angle and yaw rate track the reference vehicle model. The simulation results show that the integrated controller improves vehicle stability more effectively than using the AFS controller alone.


2013 ◽  
Vol 313-314 ◽  
pp. 1125-1129
Author(s):  
Fu Guang Yang ◽  
Jiu Hong Ruan ◽  
Yi Bin Li

Study the lateral stability control method with regenerative braking for 4WID electrical vehicle whiling braking, an integrated control strategy with primary objective to enhance vehicle lateral stability was proposed, by which the regenerative braking, hydraulic braking, ABS and direct yaw moment control system were coordinated effectively. Simulation results on split-μ road indicated that compared with traditional ABS, the integrated control method can improve the lateral stability of vehicle at urgent braking condition, and increase the mileage of electric vehicles.


2021 ◽  
Vol 252 ◽  
pp. 01044
Author(s):  
Xian Li

Aiming at the lateral stability control problem of distributed driven electric vehicles under high speed steering condition, a hierarchical control algorithm of direct yaw moment is designed. The upper control takes the 2-DOF vehicle model as the reference model and uses the sliding mode control to obtain the required yaw moment by tracking the desired yaw velocity and the desired vehicle side-slip angle. The lower control optimizes the distribution of four wheel torque with the minimum tire utilization rate. Finally, Carsim/Simulink was used for model building and co-simulation, and the control effect of PID algorithm was compared. The results show the hierarchical control algorithm achieves the expected goal of improving vehicle lateral stability.


IEEE Access ◽  
2021 ◽  
Vol 9 ◽  
pp. 136892-136904
Author(s):  
In-Gyu Jang ◽  
Seung-Han You ◽  
Sung-Ho Hwang ◽  
Wanki Cho

Author(s):  
Behrouz Najjari ◽  
Mehdi Mirzaei ◽  
Amin Tahouni

This paper looks into the energy management and directional stability of four-in-wheel driven electric vehicles, simultaneously. In the proposed strategy, the optimal driving torques are initially distributed between the wheels by considering the condition for minimum losses of motors using the motor efficiency model. In risky maneuvers, a novel optimal torque vectoring system is developed to intentionally change the initial optimal torques for the generation of required stabilizing yaw moment. For designing the stability controller, a new constrained control method is analytically developed based on the prediction of continuous nonlinear vehicle models. The proposed control method restricts the side-slip angle to guarantee the stability. Also, the required control torque for each motor is restricted within the admissible range according to the motor map. As another result of the constrained strategy, a small change in the optimal energy consumption is occurred for improved stability because of using minimum external yaw moment. In simulation studies, a good performance of the developed control system to provide both directional stability and drivability of electric vehicle with high energy efficiency is presented at different driving conditions using 14-degrees-of-freedom vehicle model. A comparative study with the conventional model predictive control method indicates the speed of the proposed constrained control method and the ease of its solution and implementation.


Sign in / Sign up

Export Citation Format

Share Document