scholarly journals Effect of MnO2 Dopant on Properties of Na+-β/β"-Al2O3 Solid Electrolyte Prepared by a Synthesizing-cum-sintering Process

2021 ◽  
Vol 27 (1) ◽  
pp. 68-76
Author(s):  
Dae-Han LEE ◽  
Jin-Sik KIM ◽  
Young-Hyuk KIM ◽  
Sung-Ki LIM

In order to simplify the complexity of the conventional solid-state reaction process, Na+-β/β″-Al2O3 as a fast Na+-ionic conductive solid electrolyte was fabricated using a synthesizing-cum-sintering process combined with the double-zeta method, which is able to distribute a small amount of Li2O more homogeneously in the Na2O-Al2O3-Li2O system. Additionally, in order to enhance the ionic conductivity, MnO2 was used as a dopant to increase the Na+-ion concentration on the conduction plane in the Na+-β/β″-Al2O3 crystal structure. The relative sintered density increased with the synthesis temperature, ultimately reaching 99.7 % after synthesis at 1400 °C. The phase formation showed an overall β″-phase fraction over 90 %. The addition of MnO2 had a positive effect on the phase formation, but a negative influence on the relative density resulting from the grain growth promotion effect. The highest ionic conductivity was observed at 1.74 × 10-1 S/cm (350 °C) for the sample sintered at 1600 °C with 0.5 wt.% MnO2.

Materials ◽  
2021 ◽  
Vol 14 (7) ◽  
pp. 1671
Author(s):  
Lei Ni ◽  
Zhigang Wu ◽  
Chuyi Zhang

Garnet-type Li7La3Zr2O12 (LLZO) is considered as a promising solid electrolyte. Nb-doped LLZO ceramics exhibit significantly improved ion conductivity. However, how to prepare the Nb-doped LLZO ceramics in a simple and economical way, meanwhile to investigate the relationship between process conditions and properties in Li7-xLa3Zr2-xNbxO12 ceramics, is particularly important. In this study, Li7-xLa3Zr2-xNbxO12 (LLZNxO, x = 0, 0.2, 0.4, 0.6) ceramics were prepared by conventional solid-state reaction. The effect of sintering process on the structure, microstructure, and ionic conductivity of LLZNxO (x = 0, 0.2, 0.4, 0.6) ceramics was investigated. Due to the more contractive Nb-O bonds in LLZNxO ceramics, the cubic structures are much easier to form and stabilize, which could induce the decreased preparation time. High-performance garnet LLZNxO ceramics can be obtained by optimizing the sintering process with lower calcining temperature and shorter holding time. The garnet samples with x = 0.4 calcined at 850 °C for 10 h and sintered at 1250 °C for 4 h exhibit the highest ionic conductivity of 3.86 × 10−4 S·cm−1 at room temperature and an activation energy of 0.32 eV, which can be correlated to the highest relative density of 96.1%, and good crystallinity of the grains.


Nanoscale ◽  
2021 ◽  
Author(s):  
Feihu Tan ◽  
Hua An ◽  
Ning Li ◽  
Jun Du ◽  
Zhengchun Peng

As flexible all-solid-state batteries are highly safe and lightweight, they can be considered as candidates for wearable energy sources. However, their performance needs to be first improved, which can be...


Nanomaterials ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 989
Author(s):  
Feihu Tan ◽  
Hua An ◽  
Ning Li ◽  
Jun Du ◽  
Zhengchun Peng

All-solid-state batteries (ASSBs) are attractive for energy storage, mainly because introducing solid-state electrolytes significantly improves the battery performance in terms of safety, energy density, process compatibility, etc., compared with liquid electrolytes. However, the ionic conductivity of the solid-state electrolyte and the interface between the electrolyte and the electrode are two key factors that limit the performance of ASSBs. In this work, we investigated the structure of a Li0.33La0.55TiO3 (LLTO) thin-film solid electrolyte and the influence of different interfaces between LLTO electrolytes and electrodes on battery performance. The maximum ionic conductivity of the LLTO was 7.78 × 10−5 S/cm. Introducing a buffer layer could drastically improve the battery charging and discharging performance and cycle stability. Amorphous SiO2 allowed good physical contact with the electrode and the electrolyte, reduced the interface resistance, and improved the rate characteristics of the battery. The battery with the optimized interface could achieve 30C current output, and its capacity was 27.7% of the initial state after 1000 cycles. We achieved excellent performance and high stability by applying the dense amorphous SiO2 buffer layer, which indicates a promising strategy for the development of ASSBs.


Author(s):  
Kentaro Yamamoto ◽  
Seunghoon Yang ◽  
Masakuni Takahashi ◽  
Koji Ohara ◽  
Tomoki Uchiyama ◽  
...  

Author(s):  
Diego Holanda Pereira de Souza ◽  
Kasper T. Møller ◽  
Stephen A. Moggach ◽  
Terry D Humphries ◽  
Anita D’Angelo ◽  
...  

Metal boron-hydrogen compounds are considered as promising solid electrolyte candidates for the development of all-solid-state batteries (ASSB), owing to the high ionic conductivity exhibited by closo- and nido-boranes. In this...


2021 ◽  
Vol 60 (12) ◽  
pp. 4630-4638
Author(s):  
Changxiang Guo ◽  
Dong Liu ◽  
Jinjia Wei ◽  
Fei Chen

2001 ◽  
Vol 16 (8) ◽  
pp. 2264-2270 ◽  
Author(s):  
Hirokazu Kawaoka ◽  
Tomohiko Adachi ◽  
Tohru Sekino ◽  
Yong-Ho Choa ◽  
Lian Gao ◽  
...  

Highly densed silicon nitride ceramics with various α/β phase ratios were produced by pulse electric current sintering process. The β-phase content of Si3N4 in sintered materials varied from 20 to 100 wt% depending on the sintering condition. The microstructure was observed by scanning electron microscopy and investigated by image analysis. Young's modulus, hardness, fracture toughness, and strength were strongly dependent on the α/β phase ratio. The fracture toughness increased from 4.6 MPa m1/2 for 20-wt% b-phase content to 8.2 MPa m1/2 for 95-wt% β-phase content, and the fracture strength showed a maximum value of about 1.6 GPa at 60-to-80-wt% β-phase content.


2021 ◽  
Vol 22 ◽  
pp. 100553
Author(s):  
M. Simonova ◽  
A. Filippov ◽  
G. Nosova ◽  
E. Zhukova ◽  
L. Litvinova ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document