scholarly journals Molecular Crosstalk between HIV-1 Integration and Host Proteins – Implications for Therapeutics

10.5772/23095 ◽  
2011 ◽  
Author(s):  
Youichi Suzuki ◽  
Yasutsugu Suzuki ◽  
Naoki Yamamoto
2003 ◽  
Vol 77 (15) ◽  
pp. 8237-8248 ◽  
Author(s):  
David R. M. Graham ◽  
Elena Chertova ◽  
Joanne M. Hilburn ◽  
Larry O. Arthur ◽  
James E. K. Hildreth

ABSTRACT Recent evidence suggests that human immunodeficiency virus type 1 (HIV-1) particles assemble and bud selectively through areas in the plasma membrane of cells that are highly enriched with glycosylphosphatidylinositol-anchored proteins and cholesterol, called lipid rafts. Since cholesterol is required to maintain lipid raft structure and function, we proposed that virion-associated cholesterol removal with the compound 2-hydroxy-propyl-β-cyclodextrin (β-CD) might be disruptive to HIV-1 and simian immunodeficiency virus (SIV). We examined the effect of β-CD on the structure and infectivity of cell-free virions. We found that β-CD inactivated HIV-1 and SIV in a dose-dependent manner and permeabilized the viral membranes, resulting in the loss of mature Gag proteins (capsid, matrix, nucleocapsid, p1, and p6) without loss of the envelope glycoproteins. SIV also lost reverse transcriptase (RT), integrase (IN), and viral RNA. IN appeared to be only slightly diminished in HIV-1, and viral RNA, RT, matrix, and nucleocapsid proteins were retained in HIV-1 but to a much lesser degree. Host proteins located internally in the virus (actin, moesin, and ezrin) and membrane-associated host proteins (major histocompatibility complex classes I and II) remained associated with the treated virions. Electron microscopy revealed that under conditions that permeabilized the viruses, holes were present in the viral membranes and the viral core structure was perturbed. These data provide evidence that an intact viral membrane is required to maintain mature virion core integrity. Since the viruses were not fixed before β-CD treatment and intact virion particles were recovered, the data suggest that virions may possess a protein scaffold that can maintain overall structure despite disruptions in membrane integrity.


2013 ◽  
Vol 12 (5) ◽  
pp. 2045-2054 ◽  
Author(s):  
Michael E. Linde ◽  
David R. Colquhoun ◽  
Ceereena Ubaida Mohien ◽  
Thomas Kole ◽  
Veronica Aquino ◽  
...  
Keyword(s):  

2019 ◽  
Author(s):  
Molly Ohainle ◽  
Kyusik Kim ◽  
Sevnur Keceli ◽  
Abby Felton ◽  
Ed Campbell ◽  
...  

AbstractThe HIV-1 capsid protein makes up the core of the virion and plays a critical role in early steps of HIV replication. Due to its exposure in the cytoplasm after entry, HIV capsid is a target for host cell factors that act directly to block infection such as TRIM5 and MxB. Several host proteins also play a role in facilitating infection, including in the protection of HIV-1 capsid from recognition by host cell restriction factors. Through an unbiased screening approach, called HIV-CRISPR, we show that the Cyclophilin A-binding deficient P90A HIV-1 capsid mutant becomes highly-sensitized to TRIM5alpha restriction in IFN-treated cells. Further, the CPSF6-binding deficient, N74D HIV-1 capsid mutant is sensitive to restriction mediated by human TRIM34, a close paralog of the well-characterized HIV restriction factor TRIM5. This restriction occurs at the step of reverse transcription, is independent of interferon stimulation and limits HIV-1 infection in key target cells of HIV infection including CD4+ T cells and monocyte-derived dendritic cells. TRIM34 restriction requires TRIM5alpha as knockout or knockdown of TRIM5alpha results in a loss of antiviral activity. TRIM34 can also restrict some SIV capsids. Through immunofluorescence studies, we show that TRIM34 and TRIM5alpha colocalize to cytoplasmic bodies and are more frequently observed to be associated with infecting N74D capsids than with WT capsids. Our results identify TRIM34 as an HIV-1 CA-targeting restriction factor and highlight the potential role for heteromultimeric TRIM interactions in contributing restriction of HIV-1 infection in human cells.


2020 ◽  
Vol 200 ◽  
pp. 112319 ◽  
Author(s):  
Annalaura Brai ◽  
Valentina Riva ◽  
Francesco Saladini ◽  
Claudio Zamperini ◽  
Claudia Immacolata Trivisani ◽  
...  
Keyword(s):  

2015 ◽  
Vol 8s2 ◽  
pp. BCI.S30379
Author(s):  
Darin Abbadessa ◽  
Cameron A. Smurthwaite ◽  
Connor W. Reed ◽  
Roland Wolkowicz

Infectious diseases affect human health despite advances in biomedical research and drug discovery. Among these, viruses are especially difficult to tackle due to the sudden transfer from animals to humans, high mutational rates, resistance to current treatments, and the intricacies of their molecular interactions with the host. As an example of these interactions, we describe a cell-based approach to monitor specific proteolytic events executed by either the viral-encoded protease or by host proteins on the virus. We then emphasize the significance of examining proteolysis within the subcellular compartment where cleavage occurs naturally. We show the power of stable expression, highlighting the usefulness of the cell-based multiplexed approach, which we have adapted to two independent assays previously developed to monitor (a) the activity of the HIV-1-encoded protease or (b) the cleavage of the HIV-1-encoded envelope protein by the host. Multiplexing was achieved by mixing cells each carrying a different assay or, alternatively, by engineering cells expressing two assays. Multiplexing relies on the robustness of the individual assays and their clear discrimination, further enhancing screening capabilities in an attempt to block proteolytic events required for viral infectivity and spread.


2012 ◽  
Vol 87 (1) ◽  
pp. 422-432 ◽  
Author(s):  
V. B. Shah ◽  
J. Shi ◽  
D. R. Hout ◽  
I. Oztop ◽  
L. Krishnan ◽  
...  

mBio ◽  
2019 ◽  
Vol 10 (3) ◽  
Author(s):  
Yuanfei Wu ◽  
Balaji Olety ◽  
Eric R. Weiss ◽  
Elena Popova ◽  
Hikaru Yamanaka ◽  
...  

ABSTRACTIt has recently emerged that HIV-1 Nef counteracts the antiviral host proteins SERINC3 and SERINC5. In particular, SERINC5 inhibits the infectivity of progeny virions when incorporated. SERINC3 and SERINC5 are also counteracted by the unrelated murine leukemia virus glycosylated Gag (glycoGag) protein, which possesses a potent Nef-like activity on HIV-1 infectivity. We now report that a minimal glycoGag termed glycoMA can fully substitute for Nef in promoting HIV-1 replication in Jurkat T lymphoid cells, indicating that Nef enhances replication in these cells mainly by counteracting SERINCs. In contrast, the SERINC antagonist glycoMA was unable to substitute for Nef in MOLT-3 T lymphoid cells, in which HIV-1 replication was highly dependent on Nef, and remained so even in the absence of SERINC3 and SERINC5. As in MOLT-3 cells, glycoMA was unable to substitute for Nef in stimulating HIV-1 replication in primary human cells. Although the ability of Nef mutants to promote HIV-1 replication in MOLT-3 cells correlated with the ability to engage endocytic machinery and to downregulate CD4, Nef nevertheless rescued virus replication under conditions where CD4 downregulation did not occur. Taken together, our observations raise the possibility that Nef triggers the endocytosis of a novel antiviral factor that is active against both laboratory-adapted and primary HIV-1 strains.IMPORTANCEThe Nef protein of HIV-1 and the unrelated glycoGag protein of a murine leukemia virus similarly prevent the uptake of antiviral host proteins called SERINC3 and SERINC5 into HIV-1 particles, which enhances their infectiousness. We now show that although both SERINC antagonists can in principle similarly enhance HIV-1 replication, glycoGag is unable to substitute for Nef in primary human cells and in a T cell line called MOLT-3. In MOLT-3 cells, Nef remained crucial for HIV-1 replication even in the absence of SERINC3 and SERINC5. The pronounced effect of Nef on HIV-1 spreading in MOLT-3 cells correlated with the ability of Nef to engage cellular endocytic machinery and to downregulate the HIV-1 receptor CD4 but nevertheless persisted in the absence of CD4 downregulation. Collectively, our results provide evidence for a potent novel restriction activity that affects even relatively SERINC-resistant HIV-1 isolates and is counteracted by Nef.


2019 ◽  
Vol 14 (5) ◽  
pp. 1934578X1984919
Author(s):  
Ywh-Min Tzou ◽  
Ronald Shin ◽  
N. Rama Krishna

The human immunodeficiency virus (HIV-1 virus) exploits several host factors for assembly, infection, and replication within the infected cells. In this work, we describe the evidence for an interaction of the N-terminal domain of the HIV-1 capsid protein with human calmodulin. The precise role of this interaction within the life cycle of the HIV-1 virus is yet to be defined. Potential roles for this interaction in the viral capsid uncoating are discussed.


Viruses ◽  
2019 ◽  
Vol 11 (1) ◽  
pp. 85 ◽  
Author(s):  
Jonathan Burnie ◽  
Christina Guzzo

The incorporation of biologically active host proteins into HIV-1 is a well-established phenomenon, particularly due to the budding mechanism of viral egress in which viruses acquire their external lipid membrane directly from the host cell. While this mechanism might seemingly imply that host protein incorporation is a passive uptake of all cellular antigens associated with the plasma membrane at the site of budding, this is not the case. Herein, we review the evidence indicating that host protein incorporation can be a selective and conserved process. We discuss how HIV-1 virions displaying host proteins on their surface can exhibit a myriad of altered phenotypes, with notable impacts on infectivity, homing, neutralization, and pathogenesis. This review describes the canonical and emerging methods to detect host protein incorporation, highlights the well-established host proteins that have been identified on HIV-1 virions, and reflects on the role of these incorporated proteins in viral pathogenesis and therapeutic targeting. Despite many advances in HIV treatment and prevention, there remains a global effort to develop increasingly effective anti-HIV therapies. Given the broad range of biologically active host proteins acquired on the surface of HIV-1, additional studies on the mechanisms and impacts of these incorporated host proteins may inform the development of novel treatments and vaccine designs.


Sign in / Sign up

Export Citation Format

Share Document