scholarly journals Biotechnological Approaches for the Control of Insect Pests in Crop Plants

Author(s):  
Jackie Stevens ◽  
Kerry Dunse ◽  
Jennifer Fox ◽  
Shelley Evans ◽  
Marilyn Anderso
Keyword(s):  
2021 ◽  
Vol 31 (1) ◽  
Author(s):  
Shilpa Kamatham ◽  
Sandhya Munagapati ◽  
Kota Neela Manikanta ◽  
Rohith Vulchi ◽  
Kiranmai Chadipiralla ◽  
...  

Abstract Background While the rapidly increasing global population has led to a dramatically increased demand for the agricultural production, there have been heavy economic losses owing to various pest attacks on different food crops. The advancement of various biotechnological techniques have come as a boon in addressing the global concern and leads to the development of novel varieties that have proven to be highly economical, pesticide resistant and environmentally safe. Main body The present review was aimed to update the recent developments that have taken place in the field of crop production. Major focus was laid predominantly on such genes that have demonstrated positive effects and proved to be of commercial success at the market primarily due to the development of pest-resistant transgenic food crops with expression of Bacillus thuringiensis toxins. This technology has been effective against a wide range of pests including coleopterans, lepidopterans, hemipterans, dipterans, strongylida (nematodes) and rhabditida. In similar lines various plant derived toxic proteins were also discussed along with different genes that code for insect resistant proteins such as δ-endotoxins and secreted toxins. This article also helps in understanding the structural features of the genes that are endowed with insect resistance followed by their mechanism of action on pests. Further the role of secondary metabolites in controlling the pests was addressed. The Pros and Cons of existing tools of insect pest management were demonstrated. Conclusions Novel technologies are necessary in crop improvement to progress the pace of the breeding programs, to confer insect resistance in crop plants. Therefore, the future aim of crop biotechnology is to engineer a sustainable, multi-mechanistic resistance to insect pests considering the diversity of plant responses to insect attack.


1986 ◽  
Vol 7 (06) ◽  
pp. 689-696 ◽  
Author(s):  
R. Velusamy ◽  
E. A. Heinrichs
Keyword(s):  

2021 ◽  
Author(s):  
Shipra Saxena ◽  
Sneha Yogindran ◽  
Manmohan Arya ◽  
Yogita Sharma ◽  
Chandra Pal Singh

Insects as pests destroy annually an estimated 18–20% of the crop production worldwide. Caterpillars, the larval stage of moths, are the major pests of agricultural products owing to their voracious feeding habits. In the past few decades, the potent methods of insect control, such as insecticides and Bt toxins, have been constrained as a result of health hazards, environmental issues, and development of resistance, after their prolonged application. Thus, there is need to find alternative options to improve plant protection strategies. Recently, RNA interference (RNAi), the post-transcriptional gene-silencing mechanism, has emerged as one of such a novel, sustainable, and environment friendly approaches for insect management and crop protection. RNAi technology relies on selection of a vital insect pest target gene and its expression as a double stranded RNA or stem-loop RNA molecule, which is recognized by the host RNAi machinery and processed into small interfering RNAs (siRNAs) or microRNAs (miRNAs). The siRNA/miRNA along with the RNA-induced silencing complex (RISC) binds to the complimentary mRNA and induce gene silencing at post-transcriptional level. With effective target-gene selection and transgenic plants expressing these precursor RNA molecules, insect pests of various crops have been efficiently managed. In this chapter, we discuss the basic mechanism of RNAi and its application in controlling lepidopteran pests of important crop plants.


Author(s):  
Dorian Q. Fuller ◽  
Chris J Stevens

This paper explores the relationship of weeds and crop parasites in the domestication of crop-plants within the Old World, drawing predominately on China and the Near East. This relationship is explored using the concept of niche construction in which the act of cultivation sets about chains of feedback in which the ecological worlds of plants and humans became increasingly intertwined resulting in ever increasing spheres of interdependence. Into this domestication entanglement a number of peripheral organisms (termed parasitic domesticoids) were drawn, from the weeds which came to inhabit arable fields, to the insect pests and rodents that came to settle in the grain stores of the first farmers. The evolution and spread of these organisms is then outlined against that of the crop itself.


2019 ◽  
Vol 16 (6) ◽  
pp. 482 ◽  
Author(s):  
Ying Wang ◽  
Zoe S. Welch ◽  
Aaron R. Ramirez ◽  
Dermont C. Bouchard ◽  
Joshua P. Schimel ◽  
...  

Environmental contextEngineered nanomaterials have the potential to accumulate in agricultural soils where they may influence crop plants. There is, however, little information about how adverse environmental conditions may interact with nanomaterial effects on plants and plant-microbe interactions. We report the comparative effects of three carbonaceous nanomaterials on the growth, nodulation and foliar health of a globally important legume crop, soybean, under the combined stresses of high temperature and insect pests. AbstractBecause carbonaceous nanomaterials (CNMs) are expected to enter soils, the exposure implications to crop plants and plant–microbe interactions should be understood. Most investigations have been under ideal growth conditions, yet crops commonly experience abiotic and biotic stresses. Little is known how co-exposure to these environmental stresses and CNMs would cause combined effects on plants. We investigated the effects of 1000mgkg−1 multiwalled carbon nanotubes (CNTs), graphene nanoplatelets (GNPs) and industrial carbon black (CB) on soybeans grown to the bean production stage in soil. Following seed sowing, plants became stressed by heat and infested with an insect (thrips). Consequently, all plants had similarly stunted growth, leaf damage, reduced final biomasses and fewer root nodules compared with healthy control soybeans previously grown without heat and thrips stresses. Thus, CNMs did not significantly influence the growth and yield of stressed soybeans, and the previously reported nodulation inhibition by CNMs was not specifically observed here. However, CNMs did significantly alter two leaf health indicators: the leaf chlorophyll a/b ratio, which was higher in the GNP treatment than in either the control (by 15%) or CB treatment (by 14%), and leaf lipid peroxidation, which was elevated in the CNT treatment compared with either the control (by 47%) or GNP treatment (by 66%). Overall, these results show that, while severe environmental stresses may impair plant production, CNMs (including CNTs and GNPs) in soil could additionally affect foliar health of an agriculturally important legume.


2019 ◽  
Vol 17 (1) ◽  
pp. 13-22
Author(s):  
MR Mia ◽  
MR Amin ◽  
H Rahman ◽  
MG Miah

The abundance of insect pests, predators and pollinators and status of pest insects associated with citrus, mango and pineapple crops grown in an agroforestry in Bangladesh was studied during July 2015 to June 2016. Twenty five species of insects belonging to 19 families in 5 orders were found as pest of citrus and their relative abundance varied from 2.4 to 13.4%. Among the citrus pests, green leaf hopper was most abundant, but whitefly, mealy bug, lemon butterfly and leaf minor were found as major pests. Fifteen species of insects under 13 families in 6 orders were found as pests of mango and their relative abundance varied from 0.5 to 82.6%, and hopper and fruit fly were found as major pests. Four species of insects belonging to 4 families in 3 orders were found as pest of pineapple and their relative abundance varied from 12.2 to 44.9%, and all were found as minor pests. There were 20 species of predator insects belonging to 13 families in 6 orders and their abundance ranged from 0.8 to 2.5/ 40 sweeps. In total 19 species of insects belonging to 12 families in 4 orders were found as pollinators and their abundance varied from 1.7 to 5.1/40 sweeps. The ants and honeybees were most abundant as predators and pollinators, respectively. SAARC J. Agri., 17(1): 13-22 (2019)


2010 ◽  
Vol 55 (1) ◽  
pp. 34-41 ◽  
Author(s):  
Pampapathy Gurulingappa ◽  
Gregory A. Sword ◽  
Gregory Murdoch ◽  
Peter A. McGee

Sign in / Sign up

Export Citation Format

Share Document