scholarly journals The Need for Integrated Life Cycle Sustainability Analysis of Biofuel Supply Chains

Author(s):  
Anthony Halog ◽  
Nana Awuah
Author(s):  
Cheila Almeida ◽  
Philippe Loubet ◽  
Tamíris Pacheco da Costa ◽  
Paula Quinteiro ◽  
Jara Laso ◽  
...  

Energies ◽  
2020 ◽  
Vol 13 (23) ◽  
pp. 6236
Author(s):  
Michael Samsu Koroma ◽  
Nils Brown ◽  
Giuseppe Cardellini ◽  
Maarten Messagie

The potential environmental impacts of producing and using future electric vehicles (EVs) are important given their expected role in mitigating global climate change and local air pollutants. Recently, studies have begun assessing the effect of potential future changes in EVs supply chains on overall environmental performance. This study contributes by integrating expected changes in future energy, iron, and steel production in the life cycle assessment (LCA) of EVs. In this light, the study examines the impacts of changes in these parameters on producing and charging future EVs. Future battery electric vehicles (BEV) could have a 36–53% lower global warming potential (GWP) compared to current BEV. The change in source of electricity generation accounts for 89% of GWP reductions over the BEV’s life cycle. Thus, it presents the highest GWP reduction potential of 35–48%. The use of hydrogen for direct reduction of iron in steelmaking (HDR-I) is expected to reduce vehicle production GWP by 17% compared to current technology. By accounting for 9% of the life cycle GWP reductions, HDR-I has the second-highest reduction potential (1.3–4.8%). The results also show that the potential for energy efficiency improvement measures for GWP reduction in vehicle and battery manufacture would be more beneficial when applied now than in the distant future (2050), when the CO2 intensity of the EU electricity is expected to be lower. Interestingly, under the same conditions, the high share of renewable energy in vehicle supply chains contributed to a decrease in all air pollution-related impact categories, but an increase in toxicity-related categories, as well as land use and water consumption.


2015 ◽  
Vol 187 ◽  
pp. 6-13 ◽  
Author(s):  
Jingzheng Ren ◽  
Liang Dong ◽  
Lu Sun ◽  
Michael Evan Goodsite ◽  
Shiyu Tan ◽  
...  

Agriculture ◽  
2018 ◽  
Vol 8 (9) ◽  
pp. 130 ◽  
Author(s):  
Oriana Gava ◽  
Francesca Galli ◽  
Fabio Bartolini ◽  
Gianluca Brunori

Despite policymakers’ promotion of food relocalization strategies for burden mitigation, the assumption that local food chains are more sustainable than the global ones might not hold. This literature review tries to highlight a possible framework for exploratory analyses that aim at associating sustainability with the geographical proximity of food supply chains. The purpose of the article is identifying a set of communicative and information-dense indicators for use by evaluators. Bread is the selected test food, given its importance in human nutrition and the relevance of some of its life cycle phases for land use (cereal farming) and trade (cereal commercialization). Article searching (including keyword selection, explicit inclusion/exclusion criteria, and computer-assisted screening using the NVivo® software) was carried out over the Scopus, Web of Science, and Google Scholar databases, and returned 29 documents (refereed and non-refereed publications). The retrieved literature shows varied research focus, methods, and depth of analyses. The review highlighted 39 environmental, 36 economic, and 27 social indicators, along the food chain. Indicators’ reporting chains are heterogeneous; even the comparison of standard procedures, e.g., Life Cycle Assessment, is not straightforward. Holistic approaches are missing.


2020 ◽  
Author(s):  
Ganeshan Gujilva Natarajan ◽  
R. Kamalakannan ◽  
R. Vijayakumar

Energies ◽  
2020 ◽  
Vol 13 (18) ◽  
pp. 4853
Author(s):  
Edward Majewski ◽  
Anna Komerska ◽  
Jerzy Kwiatkowski ◽  
Agata Malak-Rawlikowska ◽  
Adam Wąs ◽  
...  

Improving the eco-efficiency of food systems is one of the major global challenges faced by the modern world. Short food supply chains (SFSCs) are commonly regarded to be less harmful to the environment, among various reasons, due to their organizational distribution and thus the shortened physical distance between primary producers and final consumers. In this paper, we empirically test this hypothesis, by assessing and comparing the environmental impacts of short and long food supply chains. Based on the Life Cycle Assessment (LCA) approach, we calculate eco-efficiency indicators for nine types of food distribution chains. The analysis is performed on a sample of 428 short and long food supply chains from six European countries. Our results indicate that, on average, long food supply chains may generate less negative environmental impacts than short chains (in terms of fossil fuel energy consumption, pollution, and GHG emissions) per kg of a given product. The values of eco-efficiency indicators display a large variability across analyzed chains, and especially across different types of SFSCs. The analysis shows that the environmental impacts of the food distribution process are not only determined by the geographical distance between producer and consumer, but depend on numerous factors, including the supply chain infrastructure.


2019 ◽  
Vol 21 (4) ◽  
pp. 885-896 ◽  
Author(s):  
M. Volanti ◽  
D. Cespi ◽  
F. Passarini ◽  
E. Neri ◽  
F. Cavani ◽  
...  

The present work compares, from a life cycle perspective, four different ways for the production of terephthalic acid.


Author(s):  
Reinout Heijungs

Ecodesign — Carbon Footprint — Life Cycle Assessment — Life Cycle Sustainability Analysis. A Flexible Framework for a Continuum of Tools Life cycle assessment (LCA) is a tool for answering questions related to environmental impacts of products. It is a comprehensive tool, addressing the entire life cycle, and addressing the full spectrum of environmental impacts. There are two opposite movements occurring: LCA is getting smaller, and it is getting broader. This presentation presents the general framework for a broader life cycle sustainability analysis (LCSA), and shows how the practical work related to doing an LCA, a carbon footprint, or an analysis for ecodesign, can be seen as special cases.


Sign in / Sign up

Export Citation Format

Share Document