scholarly journals Soil Physical Quality and Carbon Stocks Related to Weed Control and Cover Crops in a Brazilian Oxisol

Author(s):  
Cezar Francisco ◽  
Benedito Noedi ◽  
Julio Cesar Dias Chaves ◽  
George Mitsuo Yada Junior
2020 ◽  
Author(s):  
Vittoria Giannini ◽  
Simone Di Prima ◽  
Laura Mula ◽  
Roberto Marrosu ◽  
Mario Pirastru ◽  
...  

<p>Cardoon (<em>Cynara cardunculus</em> L.) is a promising energy crop for marginal areas in Mediterranean environment. Temporary intercropping with cover crops can provide multiple services such as weed suppression, additional and diversified biomass production and soil physical quality (SPQ) improvement.</p><p>A number of studies have demonstrated that the Beerkan estimation of soil transfer parameters (BEST) method appears promising for assessing SPQ in agricultural soils, given that it allows the entire determination of the water retention and hydraulic conductivity curves, and the derivation of both static and dynamic SPQ indicators in the field. However, BEST is suitable only for single-permeability (SP) soils. Lassabatere et al. (2019) designed a method for the hydraulic characterization of dual-permeability (DP) soils named BEST-2K to address the case of the soils prone to preferential flow. DP models are increasingly adopted in soil science to take better account of water flow dynamics in heterogeneous soils. Moreover, recent investigations suggested that a comprehensive assessment of SPQ of agricultural soils also involving DP approaches may substantially improve our capacity to evaluate the effect of specific management practices on key “domain-oriented” processes. Indeed, DP models assume that soil encompass two domains, including the matrix and the fast-flow domain that respectively host the smallest and the largest pores. While in the matrix domain the intra-aggregate pores constitutes the primary source of plant-available water and nitrous oxides, in the fast-flow domain the inter-aggregate pores are the primary region for root-essential air, carbon dioxide generation and nutrient leaching losses (Reynolds, 2017).</p><p>We investigated the effects of temporary intercropping with cover crops belonging to different functional groups on SPQ. In October 2019, an experimental trial intercropping <em>Cynara cardunculus</em> cv Bianco Avorio with four different cover types (3 cover crops: <em>Vicia villosa</em> Roth. cv Haymaker Plus, <em>Eruca sativa</em> L. cv Nemat and <em>Camelina sativa</em> (L.) Crantz. cv Italia and spontaneous weeds) was set up at the Ottava experimental station of the University of Sassari (Sardinia, IT).</p><p>The new BEST-2K method was used for assessing SPQ of the different intercropping systems. At this aim, we carried out multi-tension infiltration experiments in order to selectively activate only the matrix or the whole pore network, and for the characterization of the water retention and hydraulic conductivity functions of matrix and fast-flow domains. Then, we used these functions to determine SPQ indicators for the two domains. A zero-point scenario (1 month after sowing) has been already drawn. The field measurements will be repeated in summer after the harvest of the above-ground biomass of both cardoon and cover crops.</p><p><strong>References</strong></p><p>Lassabatere, L., Di Prima, S., Bouarafa, S., Iovino, M., Bagarello, V., Angulo-Jaramillo, R., 2019. BEST-2K Method for Characterizing Dual-Permeability Unsaturated Soils with Ponded and Tension Infiltrometers. Vadose Zone Journal 18. https://doi.org/10.2136/vzj2018.06.0124</p><p>Reynolds, W.D., 2017. Use of bimodal hydraulic property relationships to characterize soil physical quality. Geoderma 294, 38–49. https://doi.org/10.1016/j.geoderma.2017.01.035</p><p> </p>


Geoderma ◽  
2021 ◽  
Vol 384 ◽  
pp. 114796
Author(s):  
Matheus Bortolanza Soares ◽  
Renan Francisco Rimoldi Tavanti ◽  
Adriel Rafael Rigotti ◽  
Joaquim Pedro de Lima ◽  
Onã da Silva Freddi ◽  
...  

Author(s):  
María Paz Salazar ◽  
Carlos Germán Soracco ◽  
Rafael Villarreal ◽  
Nicolás Guillermo Polich ◽  
Guido Lautaro Bellora ◽  
...  

2010 ◽  
Vol 34 (1) ◽  
pp. 211-2178 ◽  
Author(s):  
Fabiana de Souza Pereira ◽  
Itamar Andrioli ◽  
Amauri Nelson Beutler ◽  
Cinara Xavier de Almeida ◽  
Faber de Souza Pereira

The intensive use of land alters the distribution of the pore size which imparts consequences on the soil physical quality. The Least Limiting Water Range (LLWR) allows for the visualization of the effects of management systems upon either the improvement or the degradation of the soil physical quality. The objective of this study was to evaluate the physical quality of a Red Latosol (Oxisol) submited to cover crops in the period prior to the maize crop in a no-tillage and conventional tillage system, using porosity, soil bulk density and the LLWR as attributes. The treatments were: conventional tillage (CT) and a no-tillage system with the following cover crops: sunn hemp (Crotalaria juncea L.) (NS), pearl millet (Pennisetum americanum (L.) Leeke) (NP) and lablab (Dolichos lablab L.) (NL). The experimental design was randomized blocks in subdivided plots with six replications, with the plots being constituted by the treatments and the subplots by the layers analyzed. The no-tillage systems showed higher total porosity and soil organic matter at the 0-0.5 m layer for the CT. The CT did not differ from the NL or NS in relation to macroporosity. The NP showed the greater porosity, while CT and NS presented lower soil bulk density. No < 10 % airing porosity was found for the treatments evaluated, and value for water content where soil aeration is critical (θPA) was found above estimated water content at field capacity (θFC) for all densities. Critical soil bulk density was of 1.36 and 1.43 Mg m-3 for NP and CT, respectively. The LLWR in the no-tillage systems was limited in the upper part by the θFC, and in the bottom part, by the water content from which soil resistance to penetration is limiting (θPR). By means of LLWR it was observed that the soil presented good physical quality.


2021 ◽  
pp. 1-28
Author(s):  
Nicholas T. Basinger ◽  
Nicholas S. Hill

Abstract With the increasing focus on herbicide-resistant weeds and the lack of introduction of new modes of action, many producers have turned to annual cover crops as a tool for reducing weed populations. Recent studies have suggested that perennial cover crops such as white clover could be used as living mulch. However, white clover is slow to establish and is susceptible to competition from winter weeds. Therefore, the objective of this study was to determine clover tolerance and weed control in established stands of white clover to several herbicides. Studies were conducted in the fall and winter of 2018 to 2019 and 2019 to 2020 at the J. Phil Campbell Research and Education Center in Watkinsville, GA, and the Southeast Georgia Research and Education Center in Midville, GA. POST applications of imazethapyr, bentazon, or flumetsulam at low and high rates, or in combination with 2,4-D and 2,4-DB, were applied when clover reached 2 to 3 trifoliate stage. Six weeks after the initial POST application, a sequential application of bentazon and flumetsulam individually, and combinations of 2,4-D, 2,4-DB, and flumetsulam were applied over designated plots. Clover biomass was similar across all treatments except where it was reduced by sequential applications of 2,4-D + 2,4-DB + flumetsulam in the 2019 to 2020 season indicating that most treatments were safe for use on establishing living mulch clover. A single application of flumetsulam at the low rate or a single application of 2,4-D + 2,4-DB provided the greatest control of all weed species while minimizing clover injury when compared to the non-treated check. These herbicide options allow for control of problematic winter weeds during clover establishment, maximizing clover biomass and limiting canopy gaps that would allow for summer weed emergence.


Author(s):  
Katja Koehler-Cole ◽  
Christopher A. Proctor ◽  
Roger W. Elmore ◽  
David A. Wedin

Abstract Replacing tillage with cover crops (CC) for weed management in corn (Zea mays L.)-soybean [Glycine max (L.) Merr.] systems with mechanical weed control has many soil health benefits but in the western Corn Belt, CC establishment after harvest is hampered by cold temperatures, limited labor and few compatible CC species. Spring-planted CC may be an alternative, but information is lacking on suitable CC species. Our objective was to evaluate four spring-planted CC with respect to biomass production and weed suppression, concurrent with CC growth and post-termination. Cover crop species tested were oat (Avena sativa L.), barley (Hordeum vulgare L.), brown mustard [Brassica juncea (L.) Czern.] and yellow mustard (Brassica hirta Moench). They were compared to no-CC treatments that were either tilled pre- and post-planting of soybean (no-CC tilled) or not tilled at all (no-CC weedy). CC were planted in late March to early April, terminated 52–59 days later using an undercutter, and soybean was planted within a week. The experiment had a randomized complete block design with four replications and was repeated for 3 years. Mustards and small grains produced similar amounts of biomass (1.54 Mg ha−1) but mustard biomass production was more consistent (0.85–2.72 Mg ha−1) than that of the small grains (0.35–3.81 Mg ha−1). Relative to the no-CC weedy treatment, mustards suppressed concurrent weed biomass in two out of 3 years, by 31–97%, and small grains suppressed concurrent weed biomass in only 1 year, by 98%. Six weeks after soybean planting, small grains suppressed weed biomass in one out of 3 years, by 79% relative to the no-CC weedy treatment, but mustards did not provide significant weed suppression. The no-CC tilled treatment suppressed weeds each year relative to the no-CC weedy treatment, on average 87%. The ineffective weed control by CC reduced soybean biomass by about 50% six weeks after planting. While spring-planted CC have the potential for pre-plant weed control, they do not provide adequate early season weed suppression for soybean.


Land ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 195 ◽  
Author(s):  
Mirko Castellini ◽  
Anna Maria Stellacci ◽  
Danilo Sisto ◽  
Massimo Iovino

The multi-height (low, L = 3 cm; intermediate, M = 100 cm; high, H = 200 cm) Beerkan run methodology was applied on both a minimum tilled (MT) (i.e., up to a depth of 30 cm) and a no-tilled (NT) bare loam soil, and the soil water retention curve was estimated by the BEST-steady algorithm. Three indicators of soil physical quality (SPQ), i.e., macroporosity (Pmac), air capacity (AC) and relative field capacity (RFC) were calculated to assess the impact of water pouring height under alternative soil management practices. Results showed that, compared to the reference low run, M and H runs affected both the estimated soil water retention curves and derived SPQ indicators. Generally, M–H runs significantly reduced the mean values of Pmac and AC and increased RFC for both MT and NT soil management practices. According to the guidelines for assessment of SPQ, the M and H runs: (i) worsened Pmac classification of both MT and NT soils; (ii) did not worsen AC classification, regardless of soil management parameters; (iii) worsened RFC classification of only NT soil, as a consequence of insufficient soil aeration. For both soil management techniques, a strong negative correlation was found between the Pmac and AC values and the gravitational potential energy, Ep, of the water used for the infiltration runs. A positive correlation was detected between RFC and Ep. The relationships were plausible from a soil physics point of view. NT soil has proven to be more resilient than MT. This study contributes toward testing simple and robust methods capable of quantifying soil degradation effects, due to intense rainfall events, under different soil management practices in the Mediterranean environment.


2012 ◽  
Vol 27 (1) ◽  
pp. 60-67 ◽  
Author(s):  
Steven J. Shirtliffe ◽  
Eric N. Johnson

AbstractOrganic farmers in western Canada rely on tillage to control weeds and incorporate crop residues that could plug mechanical weed-control implements. However, tillage significantly increases the risk of soil erosion. For farmers seeking to reduce or eliminate tillage, potential alternatives include mowing or using a roller crimper for terminating green manure crops (cover crops) or using a minimum tillage (min-till) rotary hoe for mechanically controlling weeds. Although many researchers have studied organic crop production in western Canada, few have studied no-till organic production practices. Two studies were recently conducted in Saskatchewan to determine the efficacy of the following alternatives to tillage: mowing and roller crimping for weed control, and min-till rotary hoeing weed control in field pea (Pisum sativum L.). The first study compared mowing and roller crimping with tillage when terminating faba bean (Vicia faba L.) and field pea green manure crops. Early termination of annual green manure crops with roller crimping or mowing resulted in less weed regrowth compared with tillage. When compared with faba bean, field pea produced greater crop biomass, suppressed weeds better and had less regrowth. Wheat yields following pea were not affected by the method of termination. Thus, this first study indicated that roller crimping and mowing are viable alternatives to tillage to terminate field pea green manure crops. The second study evaluated the tolerance and efficacy of a min-till rotary harrow in no-till field pea production. The min-till rotary hoe was able to operate in no-till cereal residues and multiple passes did not affect the level of residue cover. Field pea exhibited excellent tolerance to the min-till rotary hoe. Good weed control occurred with multiple rotary hoe passes, and pea seed yield was 87% of the yield obtained in the herbicide-treated check. Therefore, this second study demonstrated that min-till rotary hoeing effectively controls many small seeded annual weeds in the presence of crop residue and thus can reduce the need for tillage in organic-cropping systems.


Sign in / Sign up

Export Citation Format

Share Document