scholarly journals Winter cover crops effects on soil organic carbon and soil physical quality in a Typical Argiudoll under continuous soybean cropping

Author(s):  
María Paz Salazar ◽  
Carlos Germán Soracco ◽  
Rafael Villarreal ◽  
Nicolás Guillermo Polich ◽  
Guido Lautaro Bellora ◽  
...  
2016 ◽  
Vol 161 ◽  
pp. 95-105 ◽  
Author(s):  
Matias E. Duval ◽  
Juan A. Galantini ◽  
Julia E. Capurro ◽  
Juan M. Martinez

Agriculture ◽  
2019 ◽  
Vol 9 (7) ◽  
pp. 146
Author(s):  
Jaan Kuht ◽  
Viacheslav Eremeev ◽  
Liina Talgre ◽  
Maarika Alaru ◽  
Evelin Loit ◽  
...  

The experiments were carried out during 2012–2017. There were 5 crops in rotation: Red clover, winter wheat, pea, potato and barley undersown (us) with red clover. There were 5 cropping systems in the experimental setup: 2 conventional systems with chemical plant protection and mineral fertilizers; 3 organic systems which included winter cover crops and farm manure. The aim of the present research was to study the effect of cultivating barley undersown with red clover and the preceding winter cover crop on the soil microbial hydrolytic activity, the change in the content of soil organic carbon (SOC) and total nitrogen (Ntot) compared to the same parameters from the field that was previously under potato cultivation (forecrop of barley in the rotation). The cultivation of barley with red clover (barley (us)) had a positive impact on the soil micro-organisms activity. In organic systems the soil microbial hydrolytic activity increased on average by 19.0%, compared to the conventional systems. By cultivating barley (us) the soil microbial hydrolytic activity had a significant effect on the SOC content only in organic systems where winter cover crops were used. Organic cultivation systems had positive impact on the soil nitrogen content; Ntot in samples taken before sowing the barley (us) was higher by 17.4% and after the cultivation of barley (us) by 14.4% compared to conventional systems, as an average of experimental years. After cultivation of barley (us) with red clover the soil microbial hydrolytic activity had no effect on the soil Ntot content in either cultivation systems.


2021 ◽  
Vol 9 (2) ◽  
pp. 130
Author(s):  
Juliana Gress Bortolini ◽  
Cláudio Roberto Fonsêca Sousa Soares ◽  
Matheus Junckes Muller ◽  
Guilherme Wilbert Ferreira ◽  
Edenilson Meyer ◽  
...  

Crop systems using cover crops affect soil physical, chemical, and biological attributes, including aggregate formation. This work aims to evaluate winter cover crop species' effect on soil total organic carbon, glomalin, and aggregation in areas with onion crops in a no-tillage vegetable production system (NTVS) and conventional tillage system (CTS) for eight years. The experiment treatments were: control, with natural vegetation(NV); black oats (Avena strigosa); rye(Secale cereale);oilseed radish(Raphanus sativus);intercropped black oats and oilseed radish; intercropped rye and oilseed radish; and a conventional tillage systems area. A 33-year old adjacent secondary forest was evaluated as a reference for undisturbed conditions. We assessed soil total organic carbon, total glomalin, and easily extractable glomalin in three soil layers (0-5, 5-10, and 10-20 cm depth). Undisturbed samples were used to quantify soil aggregate stability, aggregation indexes (weighted mean diameter; geometric mean diameter), aggregate mass distribution (macroaggregates, mesoaggregates), and macroaggregate carbon contents. The conventional tillage areas had the lowest weighted mean soil aggregate diameter, geometric mean diameter, and macroaggregate mass. Those areas also had the lowest bulk soil and aggregate organic carbon contents and the lowest total and easily extractable glomalin. Winter cover crops' use resulted in a 10% higher aggregate weighted mean diameter and geometric mean diameter. Areas with cover crops had 13% higher organic carbon contents in aggregates and 17% higher macroaggregate mass than conventional tillage areas. The highest values of total and easily extracted glomalin occurred in plots with black oats. Winter cover crops, single or intercropped, improved physical attributes of soils with onion crops under not-tillage compared to conventional tillage areas.


2019 ◽  
Vol 11 (3) ◽  
pp. 124
Author(s):  
Aristides O. Ngolo ◽  
Maurílio F. Oliveira ◽  
Igor R. Assis ◽  
Genelício C. Rocha ◽  
Raphael B. A. Fernandes

Long-term studies aiming soil quality evaluation under different soil management strategies are no common. Long-term evaluations provided more reliable contributions to decision-making and practices adoption. This study evaluated the soil physical quality of a Brazilian Cerrado Latosol after 21 years of three different soil management strategies: disc plowing (DP), no-tillage (NT), and disc harrowing+subsoiling (DHS). In comparison to the reference, a soil from a native Cerrado area, the removal of the original vegetation and the implementation of the three soil management strategies increased the soil bulk density (Bd) and reduced soil porosity, macroporosity, soil organic carbon (SOC) and the size of water-stable aggregates, but did not change the glomalin-related soil protein (GRSP) contents and clay flocculation. Similar effects were diagnosed on soil physical quality when is considered only the three different management strategies, especially on soil porosity, Bd, size of water-stable aggregates, SOC and GRSP contents. Strategies of DP and NT increased soil resistance to penetration in the superficial layers, while the annual use of DHS reduced this soil mechanical characteristic. The NT system did not provide increasing of soil organic carbon in comparison to other management practices evaluated. In conclusion, removing the native vegetation affected soil physical quality, but the Brazilian Cerrado soil is resilient to physical damage even when different intensive farming practices are implemented for more than two decades. The limitation of the NT system in improving the soil physical quality is related to climate conditions that determine the non-maintenance of straw on the soil surface.


Author(s):  
Paula K. Mota ◽  
Bruno M. Silva ◽  
Emerson Borghi ◽  
João H. M. Viana ◽  
Álvaro V. de Resende ◽  
...  

ABSTRACT The Brazilian Cerrado stands out in relation to grain production, however, in this region the occurrence of summer and irregular rainfall, drastically harm the non-irrigated production. Conservationist managements favor the soil physical quality and, consequently, the efficiency of soil water consumption. The objective of this study was to evaluate the soil physical quality, as a function of the conservation managements adopted, by using physical soil quality indicators, and to verify its relation with the soil organic carbon stocks and the grain yield in the Cerrado of Minas Gerais state, Brazil. For that, six treatments were evaluated: soybean (1) and maize (2) monocultures crop systems at medium level of investment in soil fertilization, soybean-maize crop succession at medium (3) and high (6) level of investment in soil fertilization, and crop succession of soybean-maize and intercropped with Urochloa ruziziensis at medium (4) and high (5) level of investment in soil fertilization, during the initial stage of no-tillage system. The treatments 3, 4, 5 and 6 showed improvement in the soil physical quality in relation to the monoculture. Pore distribution and soil organic carbon content were the main responsible for discriminating the intensified crop systems. Attributes related to water availability were important for plant growth in the 0-0.05 m layer, while for the 0.15-0.20 m layer, the highest soil aeration stood out. Productivity did not correlate with the evaluated attributes.


2014 ◽  
Vol 38 (2) ◽  
pp. 608-618 ◽  
Author(s):  
Eurico Lucas de Sousa Neto ◽  
Itamar Andrioli ◽  
Roberto Giolo de Almeida ◽  
Manuel Cláudio Mota Macedo ◽  
Rattan Lal

Soil physical quality is an important factor for the sustainability of agricultural systems. Thus, the aim of this study was to evaluate soil physical properties and soil organic carbon in a Typic Acrudox under an integrated crop-livestock-forest system. The experiment was carried out in Mato Grosso do Sul, Brazil. Treatments consisted of seven systems: integrated crop-livestock-forest, with 357 trees ha-1 and pasture height of 30 cm (CLF357-30); integrated crop-livestock-forest with 357 trees ha-1 and pasture height of 45 cm (CLF357-45); integrated crop-livestock-forest with 227 trees ha-1 and pasture height of 30 cm (CLF227-30); integrated crop-livestock-forest with 227 trees ha-1 and pasture height of 45 cm (CLF227-45); integrated crop-livestock with pasture height of 30 cm (CL30); integrated crop-livestock with pasture height of 45 cm (CL45) and native vegetation (NV). Soil properties were evaluated for the depths of 0-10 and 10-20 cm. All grazing treatments increased bulk density (r b) and penetration resistance (PR), and decreased total porosity (¦t) and macroporosity (¦ma), compared to NV. The values of r b (1.18-1.47 Mg m-3), ¦ma (0.14-0.17 m³ m-3) and PR (0.62-0.81 MPa) at the 0-10 cm depth were not restrictive to plant growth. The change in land use from NV to CL or CLF decreased soil organic carbon (SOC) and the soil organic carbon pool (SOCpool). All grazing treatments had a similar SOCpool at the 0-10 cm depth and were lower than that for NV (17.58 Mg ha-1).


HortScience ◽  
1998 ◽  
Vol 33 (3) ◽  
pp. 476d-476
Author(s):  
Gary R. Cline ◽  
Anthony F. Silvernail

A split-plot factorial experiment examined effects of tillage and winter cover crops on sweet corn in 1997. Main plots received tillage or no tillage. Cover crops consisted of hairy vetch, winter rye, or a mix, and N treatments consisted of plus or minus N fertilization. Following watermelon not receiving inorganic N, vetch, and mix cover cropsproduced total N yields of ≈90 kg/ha that were more than four times greater than those obtained with rye. However, vetch dry weight yields (2.7 mg/ha) were only about 60% of those obtained in previous years due to winter kill. Following rye winter cover crops, addition of ammonium nitrate to corn greatly increased (P < 0.05) corn yields and foliar N concentrations compared to treatments not receiving N. Following vetch, corn yields obtained in tilled treatments without N fertilization equaled those obtained with N fertilization. However, yields obtained from unfertilized no-till treatments were significantly (P < 0.05) lower than yields of N-fertilized treatments. Available soil N was significantly (P < 0.05) greater following vetch compared to rye after corn planting. No significant effects of tillage on sweet corn plant densities or yields were detected. It was concluded that no-tillage sweet corn was successful, and N fixed by vetch was able to sustain sweet corn production in tilled treatments but not in no-till treatments.In previous years normal, higher-yielding vetch cover crops were able to sustain sweet corn in both tilled and no-till treatments.


1958 ◽  
Vol 22 (2) ◽  
pp. 181-184 ◽  
Author(s):  
W. J. Flocker ◽  
J. A. Vomocil ◽  
M. T. Vittum

Sign in / Sign up

Export Citation Format

Share Document