scholarly journals The Adult Hematopoietic Niches — Cellular Composition, Histological Organization and Physiological Regulation

Author(s):  
Agustín G. Zapata
Pneumologie ◽  
2010 ◽  
Vol 64 (S 03) ◽  
Author(s):  
L Farkas ◽  
D Farkas ◽  
J Gauldie ◽  
W Shi ◽  
M Kolb

2005 ◽  
Vol 113 (S 1) ◽  
Author(s):  
S Petersenn ◽  
B Wallner ◽  
IM Range ◽  
H Tourne ◽  
N Unger ◽  
...  

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Karen R. Mifsud ◽  
Clare L. M. Kennedy ◽  
Silvia Salatino ◽  
Eshita Sharma ◽  
Emily M. Price ◽  
...  

AbstractGlucocorticoid hormones (GCs) — acting through hippocampal mineralocorticoid receptors (MRs) and glucocorticoid receptors (GRs) — are critical to physiological regulation and behavioural adaptation. We conducted genome-wide MR and GR ChIP-seq and Ribo-Zero RNA-seq studies on rat hippocampus to elucidate MR- and GR-regulated genes under circadian variation or acute stress. In a subset of genes, these physiological conditions resulted in enhanced MR and/or GR binding to DNA sequences and associated transcriptional changes. Binding of MR at a substantial number of sites however remained unchanged. MR and GR binding occur at overlapping as well as distinct loci. Moreover, although the GC response element (GRE) was the predominant motif, the transcription factor recognition site composition within MR and GR binding peaks show marked differences. Pathway analysis uncovered that MR and GR regulate a substantial number of genes involved in synaptic/neuro-plasticity, cell morphology and development, behavior, and neuropsychiatric disorders. We find that MR, not GR, is the predominant receptor binding to >50 ciliary genes; and that MR function is linked to neuronal differentiation and ciliogenesis in human fetal neuronal progenitor cells. These results show that hippocampal MRs and GRs constitutively and dynamically regulate genomic activities underpinning neuronal plasticity and behavioral adaptation to changing environments.


Parenting ◽  
2021 ◽  
pp. 1-25
Author(s):  
Leigha A. MacNeill ◽  
Elizabeth A. Shewark ◽  
Koraly Pérez-Edgar ◽  
Alysia Y. Blandon

2020 ◽  
Vol 401 (12) ◽  
pp. 1307-1322
Author(s):  
Gert Bange ◽  
Patricia Bedrunka

AbstractThe guanosine-based second messengers (p)ppGpp and c-di-GMP are key players of the physiological regulation of the Gram-positive model organism Bacillus subtilis. Their regulatory spectrum ranges from key metabolic processes over motility to biofilm formation. Here we review our mechanistic knowledge on their synthesis and degradation in response to environmental and stress signals as well as what is known on their cellular effectors and targets. Moreover, we discuss open questions and our gaps in knowledge on these two important second messengers.


Cells ◽  
2020 ◽  
Vol 9 (2) ◽  
pp. 274
Author(s):  
Matthew Antel ◽  
Mayu Inaba

The Drosophila ovary offers a suitable model system to study the mechanisms that orchestrate diverse cellular processes. Oogenesis starts from asymmetric stem cell division, proper differentiation and the production of fully patterned oocytes equipped with all the maternal information required for embryogenesis. Spatial and temporal regulation of cell-cell interaction is particularly important to fulfill accurate biological outcomes at each step of oocyte development. Progress has been made in understanding diverse cell physiological regulation of signaling. Here we review the roles of specialized cellular machinery in cell-cell communication in different stages of oogenesis.


1983 ◽  
Vol 244 (1) ◽  
pp. R66-R73 ◽  
Author(s):  
H. B. Lillywhite ◽  
F. H. Pough

Cardiovascular responses to head-up tilt, acutely graded hemorrhage, and pharmacologic stimulation by principal autonomic drugs were studied in four species of marine snakes, principally Aipysurus laevis (family Hydrophiidae). Arterial pressure varied inversely with tilt angle and blood volume deficit in conscious snakes outside of water, indicating that physiological regulation was poor or lacking. Calculated arterial pressures at head level typically diminished to zero in A. laevis tilted to angles greater than or equal to 30 degrees. Arterial pressure (corrected for external water pressure) did not change when these snakes were tilted in seawater. Changes of arterial pressure induced by tilt, blood loss, or autonomic drugs elicited reflex adjustments in heart activity, but the magnitude of these responses was less than that observed in terrestrial species of snake. It is concluded that baroreflexes are present but comparatively ineffective in sea snakes. Snakes tolerated large losses of blood volume, and extravascular fluids were absorbed into the circulation during hemorrhage; both hemorrhage and estimated hemodilution volumes exceeded 100% of the initial blood volume in Acalyptophis peronii. Thus, in marine snakes major fluid shifts between nonvascular and vascular compartments significantly compensate hypovolemia but, because of minor autonomic adjustments, do not result in a well-regulated arterial pressure.


Sign in / Sign up

Export Citation Format

Share Document