scholarly journals Analysing Molecular Mechanism Related to Therapy- Resistance in In-vitro Models of Ovarian Cancer

Author(s):  
Jens C. Hahne ◽  
Arnd Honig ◽  
Jörg B. Engel ◽  
Andrea Lampis ◽  
Nicola Valeri
2015 ◽  
Author(s):  
Marina Rosso ◽  
Blanca Majem ◽  
Laura Devis ◽  
Lara Lapyckyj ◽  
Marta Llauradó ◽  
...  

Heliyon ◽  
2021 ◽  
Vol 7 (2) ◽  
pp. e06099
Author(s):  
Vida Kocbek ◽  
Sara Imboden ◽  
Kostantinos Nirgianakis ◽  
Michael Mueller ◽  
Brett McKinnon

2019 ◽  
Vol 12 (1) ◽  
Author(s):  
Bo Zhou ◽  
Meng Xia ◽  
Bin Wang ◽  
Niresh Thapa ◽  
Lijuan Gan ◽  
...  

Abstract Background Cisplatin-based chemotherapy is the first-line treatment for ovarian cancer. However, acquired resistance to cisplatin treatment often occurs in epithelial ovarian cancer, and effective and practical methods for overcoming this obstacle are urgently needed. The study aimed to demonstrate the synergistic effect of clarithromycin (CAM) with cisplatin to inhibit ovarian carcinoma cells growth in vitro and in vivo. Results We performed CCK-8 assay to detect apoptosis rates in response to CAM alone or in combination with cisplatin, which were further confirmed by Annexin V and PI staining methods and western blotting. Mechanistically, CAM could reduce endogenous antioxidant enzyme expression and increase the levels of reactive oxygen species (ROS) to augment the cytotoxic effect of cisplatin. Meanwhile, a tumor xenograft model in athymic BALB/c-nude mice demonstrated that CAM combined with cisplatin resulted in reduced tumor growth and weight compared with cisplatin alone. Conclusion Collectively, our results indicate that CAM works synergistically with cisplatin to inhibit ovarian cancer cell growth, which may be manipulated by a ROS-mediated mechanism that enhances cisplatin therapy, and offers a novel strategy for overcoming cisplatin therapy resistance.


Pharmaceutics ◽  
2020 ◽  
Vol 12 (5) ◽  
pp. 401 ◽  
Author(s):  
Cinzia Borghese ◽  
Naike Casagrande ◽  
Giuseppe Corona ◽  
Donatella Aldinucci

Adipose-derived stem cells (ADSCs) primed with paclitaxel (PTX) are now hypothesized to represent a potential Trojan horse to vehicle and deliver PTX into tumors. We analyzed the anticancer activity of PTX released by ADSCs primed with PTX (PTX-ADSCs) (~20 ng/mL) in a panel of ovarian cancer (OvCa) cells sensitive or resistant to PTX. We used two (2D) and three dimensional (3D) in vitro models (multicellular tumor spheroids, MCTSs, and heterospheroids) to mimic tumor growth in ascites. The coculture of OvCa cells with PTX-ADSCs inhibited cell viability in 2D models and in 3D heterospheroids (SKOV3-MCTSs plus PTX-ADSCs) and counteracted PTX-resistance in Kuramochi cells. The cytotoxic effects of free PTX and of equivalent amounts of PTX secreted in PTX-ADSC-conditioned medium (CM) were compared. PTX-ADSC-CM decreased OvCa cell proliferation, was more active than free PTX and counteracted PTX-resistance in Kuramochi cells (6.0-fold decrease in the IC50 values). Cells cultivated as 3D aggregated MCTSs were more resistant to PTX than 2D cultivation. PTX-ADSC-CM (equivalent-PTX) was more active than PTX in MCTSs and counteracted PTX-resistance in all cell lines. PTX-ADSC-CM also inhibited OvCa-MCTS dissemination on collagen-coated wells. In conclusion, PTX-ADSCs and PTX-MSCs-CM may represent a new option with which to overcome PTX-resistance in OvCa.


2018 ◽  
Vol 20 (11) ◽  
pp. 1494-1504 ◽  
Author(s):  
Wouter B L van den Bossche ◽  
Anne Kleijn ◽  
Charlotte E Teunissen ◽  
Jane S A Voerman ◽  
Cristina Teodosio ◽  
...  

AbstractBackgroundImmunosuppressive protumoral M2 macrophages are important in pathogenesis, progression, and therapy resistance in glioblastoma (GBM) and provide a target for therapy. Recently oncolytic virotherapy in murine models was shown to change these M2 macrophages toward the pro-inflammatory and antitumoral M1 phenotype. Here we study the effects of the oncolytic virotherapy Delta24-RGD in humans, using both in vitro models and patient material.MethodsHuman monocyte-derived macrophages were co-cultured with Delta24-RGD–infected primary glioma stem-like cells (GSCs) and were analyzed for their immunophenotype, cytokine expression, and secretion profiles. Cerebrospinal fluid (CSF) from 18 Delta24-RGD–treated patients was analyzed for inflammatory cytokine levels, and the effects of these CSF samples on macrophage phenotype in vitro were determined. In addition, tumor macrophages in resected material from a Delta24-RGD–treated GBM patient were compared with 5 control GBM patient samples by flow cytometry.ResultsHuman monocyte-derived M2 macrophages co-cultured with Delta24-RGD–infected GSCs shifted toward an M1-immunophenotype, coinciding with pro-inflammatory gene expression and cytokine production. This phenotypic switch was induced by the concerted effects of a change in tumor-produced soluble factors and the presence of viral particles. CSF samples from Delta24-RGD–treated GBM patients revealed cytokine levels indicative of a pro-inflammatory microenvironment. Furthermore, tumoral macrophages in a Delta24-RGD–treated patient showed significantly greater M1 characteristics than in control GBM tissue.ConclusionTogether these in vitro and patient studies demonstrate that local Delta24-RGD therapy may provide a therapeutic tool to promote a prolonged shift in the protumoral M2 macrophages toward M1 in human GBM, inducing a pro-inflammatory and potentially tumor-detrimental microenvironment.


2014 ◽  
Vol 226 (06) ◽  
Author(s):  
D William ◽  
M Linnebacher ◽  
CF Classen

2018 ◽  
Author(s):  
F Guo ◽  
Z Yang ◽  
J Xu ◽  
J Sehouli ◽  
AE Albers ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document