scholarly journals Behavior Selection Based Navigation and Obstacle Avoidance Approach Using Visual and Ultrasonic Sensory Information for Quadruped Robots

10.5772/6234 ◽  
2008 ◽  
Vol 5 (4) ◽  
pp. 41 ◽  
Author(s):  
Kiyotaka Izumi ◽  
Maki K. Habib ◽  
Keigo Watanabe ◽  
Ryoichi Sato

A robot functioning in an environment may exhibit various forms of behavior emerge from the interaction with its environment through sense, control and plan activities. Hence, this paper introduces a behaviour selection based navigation and obstacle avoidance algorithm with effective method for adapting robotic behavior according to the environment conditions and the navigated terrain. The developed algorithm enable the robot to select the suitable behavior in real-time to avoid obstacles based on sensory information through visual and ultrasonic sensors utilizing the robot's ability to step over obstacles, and move between surfaces of different heights. In addition, it allows the robot to react in appropriate manner to the changing conditions either by fine-tuning of behaviors or by selecting different set of behaviors to increase the efficiency of the robot over time. The presented approach has been demonstrated on quadruped robot in several different experimental environments and the paper provides an analysis of its performance.

10.5772/7231 ◽  
2009 ◽  
Vol 6 (3) ◽  
pp. 28 ◽  
Author(s):  
HRH Patel ◽  
A Amodeo ◽  
JV Joseph

A robot functioning in an environment may exhibit various forms of behavior emerge from the interaction with its environment through sense, control and plan activities. Hence, this paper introduces a behaviour selection based navigation and obstacle avoidance algorithm with effective method for adapting robotic behavior according to the environment conditions and the navigated terrain. The developed algorithm enable the robot to select the suitable behavior in real-time to avoid obstacles based on sensory information through visual and ultrasonic sensors utilizing the robot's ability to step over obstacles, and move between surfaces of different heights. In addition, it allows the robot to react in appropriate manner to the changing conditions either by fine-tuning of behaviors or by selecting different set of behaviors to increase the efficiency of the robot over time. The presented approach has been demonstrated on quadruped robot in several different experimental environments and the paper provides an analysis of its performance.


2013 ◽  
Vol 748 ◽  
pp. 695-698
Author(s):  
Hai Peng Wang ◽  
Yong Sun ◽  
Peng Xiao ◽  
Yi Qing Luan

The obstacle avoidance system is an important part of the intelligent inspection robot. According to the special environmental requirements for substation inspection robot, the inspection robot obstacle avoidance detection system was designed. The system takes MCU as the controller core, selects many sets of ultrasonic sensors to detect the obstacle information around the robot, designs the transmitting and receiving circuit of the ultrasonic signal, and completes the system software program. In consideration of the substations effect of EMI to the electronic equipments, when designing circuit, using a large of filter circuit, improve systems anti-interference performance, realize real-time and veracity of measurement. Using on substation shows that the system run steadily, have high measurement precision, its important for improving the robot using on substation.


1993 ◽  
Author(s):  
Massimo Ianigro ◽  
Tiziana D'Orazio ◽  
Francesco P. Lovergine ◽  
Ettore Stella ◽  
Arcangelo Distante

2015 ◽  
Vol 775 ◽  
pp. 307-313 ◽  
Author(s):  
Zi Mu Wen ◽  
Shu Dao Zhou ◽  
Min Wang

To solve the presence of the phantom phenomenon when single ultrasonic sensor detects obstacles, this paper proposes a multi-ultrasonic sensors design using grouping cycle emission. Using the fuzzy control algorithm in the obstacle avoidance simulation, the quadrotorflies through an unknown environment. The simulation results show that the algorithm can meet the requirements of the quadrotor obstacle avoidance , and have the characteristics of real-time and accuracy , provide the foundation for further practical application.


2021 ◽  
Vol 8 ◽  
Author(s):  
Azhar Aulia Saputra ◽  
Naoyuki Takesue ◽  
Kazuyoshi Wada ◽  
Auke Jan Ijspeert ◽  
Naoyuki Kubota

There are currently many quadruped robots suited to a wide range of applications, but traversing some terrains, such as vertical ladders, remains an open challenge. There is still a need to develop adaptive robots that can walk and climb efficiently. This paper presents an adaptive quadruped robot that, by mimicking feline structure, supports several novel capabilities. We design a novel paw structure and several point-cloud-based sensory structures incorporating a quad-composite time-of-flight sensor and a dual-laser range finder. The proposed robot is equipped with physical and cognitive capabilities which include: 1) a dynamic-density topological map building with attention model, 2) affordance perception using the topological map, and 3) a neural-based locomotion model. The novel capabilities show strong integration between locomotion and internal–external sensory information, enabling short-term adaptations in response to environmental changes. The robot performed well in several situations: walking on natural terrain, walking with a leg malfunction, avoiding a sudden obstacle, climbing a vertical ladder. Further, we consider current problems and future development.


10.5772/5681 ◽  
2007 ◽  
Vol 4 (3) ◽  
pp. 35 ◽  
Author(s):  
Maki K. Habib

This paper discusses the importance, the complexity and the challenges of mapping mobile robot's unknown and dynamic environment, besides the role of sensors and the problems inherited in map building. These issues remain largely an open research problems in developing dynamic navigation systems for mobile robots. The paper presenst the state of the art in map building and localization for mobile robots navigating within unknown environment, and then introduces a solution for the complex problem of autonomous map building and maintenance method with focus on developing an incremental grid based mapping technique that is suitable for real-time obstacle detection and avoidance. In this case, the navigation of mobile robots can be treated as a problem of tracking geometric features that occur naturally in the environment of the robot. The robot maps its environment incrementally using the concept of occupancy grids and the fusion of multiple ultrasonic sensory information while wandering in it and stay away from all obstacles. To ensure real-time operation with limited resources, as well as to promote extensibility, the mapping and obstacle avoidance modules are deployed in parallel and distributed framework. Simulation based experiments has been conducted and illustrated to show the validity of the developed mapping and obstacle avoidance approach.


2019 ◽  
Vol 8 (4) ◽  
pp. 6988-6993

A smart wheelchair (SW) is a power wheelchair (PW) consist of microcontroller, actuators, sensor, and implement the assistive technology in system architecture. Users with severe motor impairment may realize the difficulty to operate a wheelchair when they are in a tight space such as passing a doorway or when avoiding obstacles since, they are unable to control the wheelchair. This project embarked on an obstacle avoidance system of a wheelchair. This project developed a cost-effective system that alarmed the user to avoid obstacle on its path. The prototype includes a Kinect camera and ultrasonic sensors. Kinect camera was placed at the right side of the wheelchair for real time video obstacle detection. Four of the ultrasonic sensors was used to detect obstacle at the front and one ultrasonic sensor for rear obstacle detection. Any obstacle detected by the ultrasonic sensors triggered the buzzer. Obstacle detected by Kinect camera was displayed with specific command for the user in attempt for obstacle avoidance. The performance of the obstacle avoidance system was tested indoor to detect obstacles in a controlled environment. The accuracy of the ultrasonic system was tested at a specific distance of 20mm to 200mm at 20mm intervals. Real time video received from the Kinect Camera was used to analyse the depth of the environment and the location of the object.


Sign in / Sign up

Export Citation Format

Share Document