scholarly journals AQuRo: A Cat-like Adaptive Quadruped Robot With Novel Bio-Inspired Capabilities

2021 ◽  
Vol 8 ◽  
Author(s):  
Azhar Aulia Saputra ◽  
Naoyuki Takesue ◽  
Kazuyoshi Wada ◽  
Auke Jan Ijspeert ◽  
Naoyuki Kubota

There are currently many quadruped robots suited to a wide range of applications, but traversing some terrains, such as vertical ladders, remains an open challenge. There is still a need to develop adaptive robots that can walk and climb efficiently. This paper presents an adaptive quadruped robot that, by mimicking feline structure, supports several novel capabilities. We design a novel paw structure and several point-cloud-based sensory structures incorporating a quad-composite time-of-flight sensor and a dual-laser range finder. The proposed robot is equipped with physical and cognitive capabilities which include: 1) a dynamic-density topological map building with attention model, 2) affordance perception using the topological map, and 3) a neural-based locomotion model. The novel capabilities show strong integration between locomotion and internal–external sensory information, enabling short-term adaptations in response to environmental changes. The robot performed well in several situations: walking on natural terrain, walking with a leg malfunction, avoiding a sudden obstacle, climbing a vertical ladder. Further, we consider current problems and future development.

2021 ◽  
Vol 14 ◽  
Author(s):  
Umer Saleem Bhat ◽  
Navneet Shahi ◽  
Siju Surendran ◽  
Kavita Babu

One of the reasons that most multicellular animals survive and thrive is because of the adaptable and plastic nature of their nervous systems. For an organism to survive, it is essential for the animal to respond and adapt to environmental changes. This is achieved by sensing external cues and translating them into behaviors through changes in synaptic activity. The nervous system plays a crucial role in constantly evaluating environmental cues and allowing for behavioral plasticity in the organism. Multiple neurotransmitters and neuropeptides have been implicated as key players for integrating sensory information to produce the desired output. Because of its simple nervous system and well-established neuronal connectome, C. elegans acts as an excellent model to understand the mechanisms underlying behavioral plasticity. Here, we critically review how neuropeptides modulate a wide range of behaviors by allowing for changes in neuronal and synaptic signaling. This review will have a specific focus on feeding, mating, sleep, addiction, learning and locomotory behaviors in C. elegans. With a view to understand evolutionary relationships, we explore the functions and associated pathophysiology of C. elegans neuropeptides that are conserved across different phyla. Further, we discuss the mechanisms of neuropeptidergic signaling and how these signals are regulated in different behaviors. Finally, we attempt to provide insight into developing potential therapeutics for neuropeptide-related disorders.


10.5772/6234 ◽  
2008 ◽  
Vol 5 (4) ◽  
pp. 41 ◽  
Author(s):  
Kiyotaka Izumi ◽  
Maki K. Habib ◽  
Keigo Watanabe ◽  
Ryoichi Sato

A robot functioning in an environment may exhibit various forms of behavior emerge from the interaction with its environment through sense, control and plan activities. Hence, this paper introduces a behaviour selection based navigation and obstacle avoidance algorithm with effective method for adapting robotic behavior according to the environment conditions and the navigated terrain. The developed algorithm enable the robot to select the suitable behavior in real-time to avoid obstacles based on sensory information through visual and ultrasonic sensors utilizing the robot's ability to step over obstacles, and move between surfaces of different heights. In addition, it allows the robot to react in appropriate manner to the changing conditions either by fine-tuning of behaviors or by selecting different set of behaviors to increase the efficiency of the robot over time. The presented approach has been demonstrated on quadruped robot in several different experimental environments and the paper provides an analysis of its performance.


Cells ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 1192
Author(s):  
Francesco Tini ◽  
Giovanni Beccari ◽  
Gianpiero Marconi ◽  
Andrea Porceddu ◽  
Micheal Sulyok ◽  
...  

DNA methylation mediates organisms’ adaptations to environmental changes in a wide range of species. We investigated if a such a strategy is also adopted by Fusarium graminearum in regulating virulence toward its natural hosts. A virulent strain of this fungus was consecutively sub-cultured for 50 times (once a week) on potato dextrose agar. To assess the effect of subculturing on virulence, wheat seedlings and heads (cv. A416) were inoculated with subcultures (SC) 1, 23, and 50. SC50 was also used to re-infect (three times) wheat heads (SC50×3) to restore virulence. In vitro conidia production, colonies growth and secondary metabolites production were also determined for SC1, SC23, SC50, and SC50×3. Seedling stem base and head assays revealed a virulence decline of all subcultures, whereas virulence was restored in SC50×3. The same trend was observed in conidia production. The DNA isolated from SC50 and SC50×3 was subject to a methylation content-sensitive enzyme and double-digest, restriction-site-associated DNA technique (ddRAD-MCSeEd). DNA methylation analysis indicated 1024 genes, whose methylation levels changed in response to the inoculation on a healthy host after subculturing. Several of these genes are already known to be involved in virulence by functional analysis. These results demonstrate that the physiological shifts following sub-culturing have an impact on genomic DNA methylation levels and suggest that the ddRAD-MCSeEd approach can be an important tool for detecting genes potentially related to fungal virulence.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Géraldine Fauville ◽  
Anna C. M. Queiroz ◽  
Erika S. Woolsey ◽  
Jonathan W. Kelly ◽  
Jeremy N. Bailenson

AbstractResearch about vection (illusory self-motion) has investigated a wide range of sensory cues and employed various methods and equipment, including use of virtual reality (VR). However, there is currently no research in the field of vection on the impact of floating in water while experiencing VR. Aquatic immersion presents a new and interesting method to potentially enhance vection by reducing conflicting sensory information that is usually experienced when standing or sitting on a stable surface. This study compares vection, visually induced motion sickness, and presence among participants experiencing VR while standing on the ground or floating in water. Results show that vection was significantly enhanced for the participants in the Water condition, whose judgments of self-displacement were larger than those of participants in the Ground condition. No differences in visually induced motion sickness or presence were found between conditions. We discuss the implication of this new type of VR experience for the fields of VR and vection while also discussing future research questions that emerge from our findings.


Cells ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 686
Author(s):  
Maria Concetta Geloso ◽  
Nadia D’Ambrosi

Microglia, besides being able to react rapidly to a wide range of environmental changes, are also involved in shaping neuronal wiring. Indeed, they actively participate in the modulation of neuronal function by regulating the elimination (or “pruning”) of weaker synapses in both physiologic and pathologic processes. Mounting evidence supports their crucial role in early synaptic loss, which is emerging as a hallmark of several neurodegenerative diseases, including multiple sclerosis (MS) and its preclinical models. MS is an inflammatory, immune-mediated pathology of the white matter in which demyelinating lesions may cause secondary neuronal death. Nevertheless, primitive grey matter (GM) damage is emerging as an important contributor to patients’ long-term disability, since it has been associated with early and progressive cognitive decline (CD), which seriously worsens the quality of life of MS patients. Widespread synapse loss even in the absence of demyelination, axon degeneration and neuronal death has been demonstrated in different GM structures, thus raising the possibility that synaptic dysfunction could be an early and possibly independent event in the neurodegenerative process associated with MS. This review provides an overview of microglial-dependent synapse elimination in the neuroinflammatory process that underlies MS and its experimental models.


Author(s):  
Jiu-Peng Chen ◽  
Hong-Jun San ◽  
Xing Wu ◽  
Bin-Zhou Xiong

Quadruped bionic robot has a strong adaptability to the environment, compared with wheeled and tracked robots, it has superior motion performance, and has a wide range of application prospects in rescue and disaster relief, ground mine clearance, mountain transportation, so it has become a research hotspot all over the world. Leg structure is an important embodiment of the superior performance of quadruped robot, and it is also the key and difficult point of design. This article proposes a novel quadruped robot with waist structure, which can complete a variety of gait forms. Based on the theory of linkage mechanism, a novel leg structure is designed with anti-parallelogram mechanism, which improves the strength and stiffness of the robot. Using D-H description method, the kinematics analysis of this quadruped robot single leg is carried out. On this basis, in order to ensure the foot contact with the ground and achieve zero impact, polynomial programming is used to plan the foot trajectory of swing phase and support phase. Based on the static stability margin, the optimal static gait of the quadruped robot is planned. A co-simulation study has been carried out to investigate further the validity and effectiveness of the quadruped robot on gait. The simulation results clearly show the robot can walk steadily and its input and output meet the expected requirements. The solid prototype platform is built, and the trajectory planning experiment of single leg is carried out, and the foot trajectory of single leg is obtained by using laser tracker. The gait planning algorithm is applied to the whole robot, and the results show that the robot can walk according to the scheduled gait, which proves the effectiveness of the proposed algorithm.


2015 ◽  
Vol 37 (1) ◽  
pp. i ◽  
Author(s):  
Shikui Dong ◽  
Ruth Sherman

This special issue covers a wide range of topics on the protection and sustainable management of alpine rangelands on the Qinghai-Tibetan Plateau (QTP), including Indigenous knowledge of sustainable rangeland management, science-policy interface for alpine rangeland biodiversity conservation, adaptations of local people to social and environmental changes and policy design for managing coupled human-natural systems of alpine rangelands.


2014 ◽  
Vol 898 ◽  
pp. 763-766
Author(s):  
Zhi Hao Li

The research and application of artificial intelligence has a very wide range in intelligent robot field. Intelligent robot can not only make use of artificial intelligence gain access to external data, information, (such as stereo vision system, face recognition and tracking, etc.), and then deal with it so as to exactly describe external environment, and complete a task independently, owing the ability of learning knowledge, but also have self-many kinds of artificial intelligence like judgment and decision making, processing capacity and so on. It can make corresponding decision according to environmental changes. Its application range is expanding. In deep sea exploration, star exploration, mineral exploration, heavy pollution, domestic service, entertainment clubs, health care and so on, the figure of intelligent robots artificial intelligence application can all be seen.


2021 ◽  
Author(s):  
Vincent Acary ◽  
Franck Bourrier ◽  
David Toe ◽  
Francois Kneib

<p><br>Block propagation models are routinely used for the quantitative assessment of rockfall hazard. In these models, one of the major difficulties is the development of physically consistent and field applicable approaches to model the interaction between the block and the natural terrain. For most of propagation models, a thorough calibration of the input parameters is not available over the wide range of configurations encountered in practice. Consequently, the parameters choice is strongly depending on expert knowledge. In addition, most of models exhibit substantial sensitivity to some parameters, i.e. small changes of these parameters entail large differences in the simulation results.</p><p>The trajectory analysis platform Platrock, freely available upon request (contact: [email protected]), allows performing 2D and 3D simulations using both material point rebound models and models, based on non-smooth mechanics, that explicitly account for block shape. This platform provides several simulation tools for detailed analyses of block propagation on study sites.</p><p>The possibilities of the predictive capabilities of different block propagation modelling approaches integrated into the Platrock platform have been assessed on a well-documented study site, where a benchmark of propagation models has been done in the context of C2ROP research project. This analysis emphasized the capacities of trajectory analyses to traduce block propagation but also demonstrated their substantial sensitivity to model parameters. The results from these simulations cannot be relevantly interpreted if they are not accompanied with calibration proofs, sensitivity analysis, and detailed interpretation of the results from the expert in charge of the study.</p>


Sensors ◽  
2019 ◽  
Vol 19 (20) ◽  
pp. 4595 ◽  
Author(s):  
Clara Gomez ◽  
Alejandra C. Hernandez ◽  
Ramon Barber

Exploration of unknown environments is a fundamental problem in autonomous robotics that deals with the complexity of autonomously traversing an unknown area while acquiring the most important information of the environment. In this work, a mobile robot exploration algorithm for indoor environments is proposed. It combines frontier-based concepts with behavior-based strategies in order to build a topological representation of the environment. Frontier-based approaches assume that, to gain the most information of an environment, the robot has to move to the regions on the boundary between open space and unexplored space. The novelty of this work is in the semantic frontier classification and frontier selection according to a cost–utility function. In addition, a probabilistic loop closure algorithm is proposed to solve cyclic situations. The system outputs a topological map of the free areas of the environment for further navigation. Finally, simulated and real-world experiments have been carried out, their results and the comparison to other state-of-the-art algorithms show the feasibility of the exploration algorithm proposed and the improvement that it offers with regards to execution time and travelled distance.


Sign in / Sign up

Export Citation Format

Share Document