scholarly journals Plithogenic SWARA-TOPSIS Decision Making on Food Processing Methods with Different Normalization Techniques

2021 ◽  
Author(s):  
Nivetha Martin

Decision making (DM) is a process of choosing the optimal alternative with the maximum extent of criteria satisfaction. The challenging aspect in making optimal decisions is the suitable choice of multi-criteria decision-making (MCDM) methods that consider the initial input as the expert’s opinion on criteria satisfaction by the alternatives. This initial decision-making matrix representation discriminates MCDM as fuzzy, intuitionistic, neutrosophic to handle the decision-making environment that is characterized by uncertainty, impreciseness, and indeterminacy, respectively. A generalized kind of representation by plithogenic sets optimizes the decision-making risks. This chapter aims in developing SWARA-TOPSIS with plithogenic representations and discusses the efficiency of this integrated approach over the method of TOPSIS with equal criterion weight. A comparative analysis of four different normalization techniques is likewise made. The proposed plithogenic integrated MCDM model is validated with the decision making on four food processing methods. The final ranks of the alternatives are also compared under the proposed plithogenic SWARA-TOPSIS and TOPSIS models with different normalization techniques. The results witness the efficiency of the proposed model over the existing models.

2021 ◽  
pp. 1-23
Author(s):  
Peide Liu ◽  
Tahir Mahmood ◽  
Zeeshan Ali

Complex q-rung orthopair fuzzy set (CQROFS) is a proficient technique to describe awkward and complicated information by the truth and falsity grades with a condition that the sum of the q-powers of the real part and imaginary part is in unit interval. Further, Schweizer–Sklar (SS) operations are more flexible to aggregate the information, and the Muirhead mean (MM) operator can examine the interrelationships among the attributes, and it is more proficient and more generalized than many aggregation operators to cope with awkward and inconsistence information in realistic decision issues. The objectives of this manuscript are to explore the SS operators based on CQROFS and to study their score function, accuracy function, and their relationships. Further, based on these operators, some MM operators based on PFS, called complex q-rung orthopair fuzzy MM (CQROFMM) operator, complex q-rung orthopair fuzzy weighted MM (CQROFWMM) operator, and their special cases are presented. Additionally, the multi-criteria decision making (MCDM) approach is developed by using the explored operators based on CQROFS. Finally, the advantages and comparative analysis are also discussed.


2021 ◽  
pp. 1-21
Author(s):  
Sundas Shahzadi ◽  
Areen Rasool ◽  
Musavarah Sarwar ◽  
Muhammad Akram

Bipolarity plays a key role in different domains such as technology, social networking and biological sciences for illustrating real-world phenomenon using bipolar fuzzy models. In this article, novel concepts of bipolar fuzzy competition hypergraphs are introduced and discuss the application of the proposed model. The main contribution is to illustrate different methods for the construction of bipolar fuzzy competition hypergraphs and their variants. Authors study various new concepts including bipolar fuzzy row hypergraphs, bipolar fuzzy column hypergraphs, bipolar fuzzy k-competition hypergraphs, bipolar fuzzy neighborhood hypergraphs and strong hyperedges. Besides, we develop some relations between bipolar fuzzy k-competition hypergraphs and bipolar fuzzy neighborhood hypergraphs. Moreover, authors design an algorithm to compute the strength of competition among companies in business market. A comparative analysis of the proposed model is discuss with the existing models such bipolar fuzzy competition graphs and fuzzy competition hypergraphs.


2020 ◽  
Vol 12 (4) ◽  
pp. 1673 ◽  
Author(s):  
Jen-Jen Yang ◽  
Huai-Wei Lo ◽  
Chen-Shen Chao ◽  
Chih-Chien Shen ◽  
Chin-Cheng Yang

In recent years, the awareness of sustainable tourism has risen around the world. Many tourism industries combine sports to attract more customers to facilitate the development of the economy and the promotion of local culture. However, it is an important task to establish a comprehensive tourism evaluation framework for sustainable sports tourism. This study proposes a Multi-Criteria Decision-Making (MCDM) model to discuss the above issues, using the Bayesian Best Worst Method (Bayesian BWM) to integrate multiple experts’ judgments to generate the group optimal criteria weights. Next, the modified Visekriterijumska Optimizacija i Kompromisno Resenje (VIKOR) technique is combined with the concept of aspiration level to determine the performance of sports attractions and their priority ranks. In addition, this study adds a perspective of institutional sustainability to emphasize the importance of government support and local marketing. The effectiveness and robustness of the proposed model is demonstrated through potential sports tourism attractions in Taiwan. A sensitivity analysis and models comparison were also performed in this study. The results show that the proposed model is feasible for practical applications and that it effectively provides some management implications to support decision-makers in formulating improvement strategies.


2013 ◽  
Vol 14 (5) ◽  
pp. 957-978 ◽  
Author(s):  
Abdolreza Yazdani-Chamzini ◽  
Mohammad Majid Fouladgar ◽  
Edmundas Kazimieras Zavadskas ◽  
S. Hamzeh Haji Moini

Renewable energies are well-known as one of the most important energy resources not only due to limited other energy resources, but also due to environmental problems associated with air pollutants and greenhouse gas emissions. Renewable energy project selection is a multi actors and sophisticated problem because it is a need to incorporate social, economic, technological, and environmental considerations. Multi criteria decision making (MCDM) methods are powerful tools to evaluate and rank the alternatives among a pool of alternatives and select the best one. COPRAS (COmplex PRoportional ASsessment) is an MCDM technique which determines the best alternative by calculating the ratio to the ideal solution and the negative ideal solution. On the other hand, analytical hierarchy process (AHP) is widely used in order to calculate the importance weights of evaluation criteria. In this paper an integrated COPRAS-AHP methodology is proposed to select the best renewable energy project. In order to validate the output of the proposed model, the model is compared with five MCDM tools. The results of this paper demonstrate the capability and effectiveness of the proposed model in selecting the most appropriate renewable energy option among the existing alternatives.


2013 ◽  
Vol 2013 ◽  
pp. 1-12 ◽  
Author(s):  
Ji-Feng Ding ◽  
Chien-Chang Chou

The role of container logistics centre as home bases for merchandise transportation has become increasingly important. The container carriers need to select a suitable centre location of transshipment port to meet the requirements of container shipping logistics. In the light of this, the main purpose of this paper is to develop a fuzzy multi-criteria decision-making (MCDM) model to evaluate the best selection of transshipment ports for container carriers. At first, some concepts and methods used to develop the proposed model are briefly introduced. The performance values of quantitative and qualitative subcriteria are discussed to evaluate the fuzzy ratings. Then, the ideal and anti-ideal concepts and the modified distance measure method are used in the proposed model. Finally, a step-by-step example is illustrated to study the computational process of the quantitative and qualitative fuzzy MCDM model. The proposed approach has successfully accomplished our goal. In addition, the proposed fuzzy MCDM model can be empirically employed to select the best location of transshipment port for container carriers in the future study.


2015 ◽  
Vol 18 (3) ◽  
pp. 531-543 ◽  
Author(s):  
Feilin Zhu ◽  
Ping-an Zhong ◽  
Bin Xu ◽  
Ye-nan Wu ◽  
Yu Zhang

Flood control operation in a multi-reservoir system is a multi-criteria decision-making (MCDM) problem, in which the considered criteria are often correlated with each other. In this paper, we propose an MCDM model for reservoir flood control operation to deal with correlation among criteria. Considering the flood control safety of reservoirs and downstream protected regions, we establish the hierarchical structure of the criterion system. We use the principal component analysis method to eliminate the correlation, and transform the original criterion system into an independent comprehensive criterion system. The comprehensive decision matrix coupled with the weight vector obtained by the improved entropy weight method serves as the input to TOPSIS method, fuzzy optimum method, and fuzzy matter-element method, by which we determine the ranking order of the alternatives. We apply the proposed model to a cascade system of reservoirs at the Daduhe River basin in China. The results show that the dimensionality of the criterion system is reduced and the correlation among criteria is eliminated simultaneously, and the ranking order of the alternatives is reasonable. The proposed model provides an effective way to deal with correlation among criteria, and can be extended to wider applications in many other MCDM problems.


Sign in / Sign up

Export Citation Format

Share Document