scholarly journals A Deep Learning-Based Aesthetic Surgery Recommendation System

Author(s):  
Phan Chau Phuc Thinh ◽  
Bui Thi Xuyen ◽  
Nguyen Do Trung Chanh ◽  
Dao Huu Hung ◽  
Mimura Daisuke
Author(s):  
Varsha R ◽  
Meghna Manoj Nair ◽  
Siddharth M. Nair ◽  
Amit Kumar Tyagi

The Internet of Things (smart things) is used in many sectors and applications due to recent technological advances. One of such application is in the transportation system, which is of primary use for the users to move from one place to another place. The smart devices which were embedded in vehicles are useful for the passengers to solve his/her query, wherein future vehicles will be fully automated to the advanced stage, i.e. future cars with driverless feature. These autonomous cars will help people a lot to reduce their time and increases their productivity in their respective (associated) business. In today’s generation and in the near future, privacy preserving and trust will be a major concern among users and autonomous vehicles and hence, this paper will be able to provide clarity for the same. Many attempts in previous decade have provided many efficient mechanisms, but they all work only with vehicles along with a driver. However, these mechanisms are not valid and useful for future vehicles. In this paper, we will use deep learning techniques for building trust using recommender systems and Blockchain technology for privacy preserving. We also maintain a certain level of trust via maintaining the highest level of privacy among users living in a particular environment. In this research, we developed a framework that could offer maximum trust or reliable communication to users over the road network. With this, we also preserve privacy of users during traveling, i.e., without revealing identity of respective users from Trusted Third Parties or even Location Based Service in reaching a destination. Thus, Deep Learning based Blockchain Solution (DLBS) is illustrated for providing an efficient recommendation system.


2019 ◽  
Vol 15 (4) ◽  
pp. 2124-2135 ◽  
Author(s):  
Renata Lopes Rosa ◽  
Gisele Maria Schwartz ◽  
Wilson Vicente Ruggiero ◽  
Demostenes Zegarra Rodriguez

Webology ◽  
2021 ◽  
Vol 18 (Special Issue 04) ◽  
pp. 1470-1478
Author(s):  
R. Lavanya ◽  
Ebani Gogia ◽  
Nihal Rai

Recommendation system is a crucial part of offering items especially in services that offer streaming. For streaming movie services on OTT, RS are a helping hand for users in finding new movies for leisure. In this paper, we propose a machine learning an approach based on auto encoders to produce a CF system which outputs movie rating for a user based on a huge DB of ratings from other users. Utilising Movie Lens dataset, we explore the use of deep learning neural network based Stacked Auto encoders to predict user s ratings on new movies, thereby enabling movie recommendations. We consequently implement Singular Value Decomposition (SVD) to recommend movies to users. The experimental result showcase that our R S out performs a user-based neighbourhood baseline in terms of MSE on predicted ratings and in a survey in which user judge between recommendation s from both systems.


2020 ◽  
Vol 34 (04) ◽  
pp. 6470-6477
Author(s):  
Canran Xu ◽  
Ming Wu

Learning representations for feature interactions to model user behaviors is critical for recommendation system and click-trough rate (CTR) predictions. Recent advances in this area are empowered by deep learning methods which could learn sophisticated feature interactions and achieve the state-of-the-art result in an end-to-end manner. These approaches require large number of training parameters integrated with the low-level representations, and thus are memory and computational inefficient. In this paper, we propose a new model named “LorentzFM” that can learn feature interactions embedded in a hyperbolic space in which the violation of triangle inequality for Lorentz distances is available. To this end, the learned representation is benefited by the peculiar geometric properties of hyperbolic triangles, and result in a significant reduction in the number of parameters (20% to 80%) because all the top deep learning layers are not required. With such a lightweight architecture, LorentzFM achieves comparable and even materially better results than the deep learning methods such as DeepFM, xDeepFM and Deep & Cross in both recommendation and CTR prediction tasks.


2021 ◽  
Vol 2021 ◽  
pp. 1-7
Author(s):  
Zhan Shi ◽  
Wei Wang

Swimming is not only an entertaining hobby but also a sporting event. It is a sport for strengthening the body. Although there are many swimming coaches, there are different swimming teaching courses. However, choosing the right swimming instructor or course is the motivation for learning swimming activities. To this end, this paper conducts related research on the personalized recommendation system for swimming teaching based on deep learning with the purpose of improving the accuracy of the recommendation system to meet the needs of the users and promote the development of swimming events. This article mainly uses the experimental test method, the system construction method, and the questionnaire survey method to analyze and study the personalized swimming teaching system and the students’ attitude to it and draw a conclusion finally. The data results show that the accuracy of the system designed in this paper can meet the basic requirements. Hence, it can bring an excellent experience to the users. According to the questionnaire data, 85%–95% of people have great confidence in the personalized recommendation system.


2019 ◽  
Author(s):  
Ardi Tampuu ◽  
Zurab Bzhalava ◽  
Joakim Dillner ◽  
Raul Vicente

ABSTRACTDespite its clinical importance, detection of highly divergent or yet unknown viruses is a major challenge. When human samples are sequenced, conventional alignments classify many assembled contigs as “unknown” since many of the sequences are not similar to known genomes. In this work, we developed ViraMiner, a deep learning-based method to identify viruses in various human biospecimens. ViraMiner contains two branches of Convolutional Neural Networks designed to detect both patterns and pattern-frequencies on raw metagenomics contigs. The training dataset included sequences obtained from 19 metagenomic experiments which were analyzed and labeled by BLAST. The model achieves significantly improved accuracy compared to other machine learning methods for viral genome classification. Using 300 bp contigs ViraMiner achieves 0.923 area under the ROC curve. To our knowledge, this is the first machine learning methodology that can detect the presence of viral sequences among raw metagenomic contigs from diverse human samples. We suggest that the proposed model captures different types of information of genome composition, and can be used as a recommendation system to further investigate sequences labeled as “unknown” by conventional alignment methods. Exploring these highly-divergent viruses, in turn, can enhance our knowledge of infectious causes of diseases.


Author(s):  
Nicolas C. Forrest ◽  
Raymond R. Hill ◽  
Phillip R. Jenkins

The planning of individualized pilot training programs is an intensive process. Over 120 maneuvers are introduced into the training program over time while ensuring maneuver competencies. This work introduces a novel, deep-learning based approach for automatically generating training plans for pilot trainees to significantly reduce instructor pilot planning requirements.


Sign in / Sign up

Export Citation Format

Share Document